Table 5 Summary of hyperparameters and neural network configurations for all numerical experiments.

From: Implicit Runge-Kutta based sparse identification of governing equations in biologically motivated systems

Models

Initial conditions

Library order

Iterations

\(\#\)hidden layers, \(\#\)neurons and activation functions

Learning Rates

\(\lambda\)

Linear damped

oscillator

\(\begin{bmatrix}2.0&0.0\end{bmatrix}^{T}\)

3

\([15000]+2\times [1000]\)

\(4\times [32]\), Tanh

(0.01, 0.001)

0.05

Linear damped

oscillator with noise

\(\begin{bmatrix}2.0&0.0\end{bmatrix}^{T}\)

3

\([20000]+2\times [2000]\)

\(4\times [32]\), Tanh

(0.005, 0.0001)

0.06

Cubic damped

oscillator

\(\begin{bmatrix}2.0&0.0\end{bmatrix}^{T}\)

3

\([15000]+2\times [1000]\)

\(4\times [32]\), Tanh

(0.01, 0.001)

0.05

FitzHugh-Nagumo

\(\begin{bmatrix}0.0&0.0\end{bmatrix}^{T}\)

3

\([20000]+7\times [1000]\)

\(4\times [32]\), Tanh

(0.001, 0.0001)

0.01

Lorenz attractor

\(\begin{bmatrix}-8&7&27\end{bmatrix}^{T}\)

3

\([20000]+2\times [2000]\)

\(1\times [256]\), SIREN

(0.5, 0.0001)

0.5

Lorenz attractor

with noise

\(\begin{bmatrix}-8&7&27\end{bmatrix}^{T}\)

3

\([20000]+2\times [2000]\)

\(1\times [256]\), SIREN

(0.1, 0.0001)

0.5

Lotka-Volterra

\(\begin{bmatrix}1.8&1.8\end{bmatrix}^{T}\)

2

\([25000]+2\times [6000]\)

\(2\times [64]\), SIREN

(0.001, 0.0001)

0.1

Logistic growth

0.1

2

\([20000]+2\times [5000]\)

\(3\times [32]\), Tanh

\((0.001, 0.0001)\)

0.025