Table 1 Comparison of previous studies.

From: Sentiment analysis for deepfake X posts using novel transfer learning based word embedding and hybrid LGR approach

Ref.

Year

Dataset

Learning type

Proposed methodology

Accuracy score %

25

2020

Pan competition bases dataset- English tweets

Machine Learning, Deep Learning

Bert based

83

6

2021

Tweepfake dataset

Deep Learning

RoBERTa

90

16

2021

Scrapped-Tweets dataset

Machine Learning, Deep Learning

SBi+LSTM

92

23

2022

Twitter Social bot

Deep Learning

GANBOT

95

21

2022

Publicly available dataset from Kaggle

Deep Learning

VGG16 CNN

94

22

2023

Self made dataset

Deep Learning

CNN

93

17

2023

Fake NewsNet dataset

Machine Learning, Deep Learning

SVM

93

20

2023

ChatGPTquery dataset, ChatGPTrephrase dataset

Machine Learning

Transformer-based ML model DistilBERT

79

27

2023

COVID-19 and vaccination datasets

Deep Learning

GRU

93

35

2023

CACD, Caltech datasets

Deep Learning

DLBAL-MS

95, 86

41

2024

RFF, RFFD dataset

Deep Learning

Shallow ViT

92

5

2024

FF++, DFDC-p dataset

Deep Learning

HCiT

96

42

2024

IMDB, Twitter US Airline, Sentimet140 datasets

Deep Learning

RoBERTa-BiLSTM

92

43

2025

Sentiment140 and IMDb datasets

Transformer-based models

Hybrid (BERT, GPT-2, RoBERTa, XLNet,and DistilBERT)

94,95