Table 2 ROR, PRR, BCPNN, and MGPS methods, formulas, and thresholds.
Method | Formula | Threshold |
---|---|---|
ROR | \(\:ROR=\frac{a/c}{b/d}=\frac{ad}{bc}\) | a ≥ 3, lower limit of 95% CI > 1 |
\(\:\text{S}E\left(lnROR\right)=\sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}\) | ||
\(\:{95\text{\%}\:\text{C}\text{I}=e}^{lnROR\pm\:1.96SE\left(\text{l}\text{n}ROR\right)}\) | ||
PRR | \(\:PRR=\frac{a/(a+b)}{b/(c+d)}\) | a ≥ 3, PRR ≥ 2, χ2  ≥ 4 |
\(\:SE\left(lnPRR\right)=\sqrt{\frac{1}{a}-\frac{1}{a+b}+\frac{1}{c}-\frac{1}{c+d}}\) | ||
\(\:{95\%CI=e}^{lnPRR\pm\:1.96SE\left(lnPRR\right)}\) | ||
\(\:{}^{2}=\frac{{(\left|ad-bc\right|-\frac{N}{2})}^{2}N}{(a+b)(c+d)(a+c)(b+d)}\) | ||
BCPNN | \(\:IC={\text{log}}_{2}\frac{a(a+b+c+d)}{(a+b)(a+c)}\) | IC-2SD > 0 |
\(\:E\left(IC\right)={\text{log}}_{2}\frac{(a+\gamma\:11)(a+b+c+d+\alpha\:)(a+b+c+d+\beta\:)}{(a+b+c+d+\gamma\:)(a+b+\alpha\:1)(a+c+\beta\:1)}\) | ||
\(\:V\left(IC\right)=\frac{1}{{\left(ln2\right)}^{2}}\left\{\left[\frac{\left(a+b+c+d\right)-a+\gamma\:-\gamma\:11}{(a+\gamma\:11)(1+a+b+c+d+\gamma\:)}\right]+\left[\frac{\left(a+b+c+d\right)-\left(a+b\right)+\alpha\:-\alpha\:1}{(a+b+\alpha\:1)(1+a+b+c+d+\alpha\:)}\right]+\left[\frac{\left(a+b+c+d\right)-\left(a+c\right)+\beta\:-\beta\:1}{(a+c+\beta\:1)(1+a+b+c+d+\beta\:)}\right]\right\}\) | ||
\(\:\alpha\:={\upalpha\:}1+\alpha\:2\) | ||
\(\:\beta\:=\beta\:1+\beta\:2\) | ||
\(\:\gamma\:={\upgamma\:}11\frac{(a+b+c+d+\alpha\:)(a+b+c+d+\beta\:)}{(a+b+\alpha\:1)(a+c+\beta\:1)}\) | ||
\(\:IC-2SD=E\left(IC\right)-2\sqrt{V\left(IC\right)}\) | ||
MGPS | \(\:EBGM=\frac{a(a+b+c+d)}{(a+c)(a+b)}\) | EBGM05 > 2 |
\(\:\text{S}E\left(lnEBGM\right)=\sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}\) | ||
\(\:{95\text{\%}\:\text{C}\text{I}=e}^{lnEBGM\pm\:1.96SE\left(\text{l}\text{n}EBGM\right)}\) |