Table 1 The Computation cost on the PEMS04 dataset.

From: Multi-scale spatio-temporal graph neural network for urban traffic flow prediction

Method

Year

Publication

Highlight words

STG-NCDE29

2022

AAAI

GCNs, NCDEs, continuously changing spatio-temporal dependencies.

ST-aware18

2022

ICDE

Data-driven, spatio-temporal awareness, window attention mechanism

DSTAGNN20

2022

PMLR

Data-driven, dynamic spatio-temporal aware graph, graph convolution, gated convolution

Auto-DSTSGN15

2023

T-ITS

Data-driven, dilated convolution, spatio-temporal synchronous graph

PDFormer30

2023

AAAI

Spatio-temporal self-attention, transformer, heterogeneous attention fusion

STGSA19

2023

JAS

Data-driven, synchronous spatial-temporal graph, multi-head attention mechanism

ISTNet16

2023

DASFAA

Transformer, convolution network, maximum pooling, local and global dependencies

DeepSTUQ7

2024

TKDE

Data-driven, GCN, GRU, Uncertainty Quantification

STJGCN17

2024

TKDE

Dilated causal convolution, spatio-temporal joint graph, multi-range attention mechanism

DEC-Former3

2024

CIKM

Data-driven, spatio-temporal decoupling, attention mechanism

STD-MAE31

2024

IJCAI

Spatio-temporal decoupled masking, data pre-training, integrate downstream spatio-temporal prediction methods