Table 3 Performance comparison of different approaches on four datasets.

From: Multi-scale spatio-temporal graph neural network for urban traffic flow prediction

 

PEMS03

PEMS04

PEMS07

PEMS08

 

RMSE

MAE

MAPE

RMSE

MAE

MAPE

RMSE

MAE

MAPE

RMSE

MAE

MAPE

STG-NCDE

27.09

15.57

15.06

31.09

19.21

12.76

33.84

20.53

8.80

24.81

15.45

9.92

ST-aware

26.63

15.17

15.83

31.02

19.06

12.52

34.05

20.74

8.77

24.62

15.41

9.94

DSTAGNN

27.21

15.57

14.68

31.46

19.30

12.70

34.51

21.42

9.01

24.77

15.67

9.94

Auto-DSTSGN

25.17

14.59

14.22

30.48

18.85

13.21

33.02

20.08

8.57

23.76

14.74

9.45

PDFormer

25.39

14.94

15.82

29.97

18.32

12.10

32.87

19.83

8.53

23.51

13.58

9.05

STGSA

27.89

15.36

14.45

31.30

19.32

12.90

34.30

20.80

8.86

24.28

15.26

9.81

ISTNet

25.14

15.12

15.43

30.46

18.54

12.52

33.06

19.79

8.77

23.39

14.13

9.43

DeepSTUQ

26.77

15.13

14.03

31.68

19.11

12.71

33.71

20.36

8.63

24.60

15.44

10.06

STJGCN

25.70

14.92

14.81

30.35

18.81

11.92

33.01

19.95

8.31

23.74

14.53

9.15

DEC-Former

23.55

14.33

14.27

29.24

18.23

12.04

33.04

19.48

8.54

23.06

13.23

9.12

STD-MAE

24.43

13.80

13.96

29.25

17.80

11.97

31.44

18.65

7.84

22.47

13.44

8.76

STGMS

22.22

12.87

13.17

24.48

14.89

10.86

24.09

14.61

6.78

17.52

10.87

7.61

Improved(%)

9.05

6.75

5.66

16.28

16.35

8.89

23.38

21.66

13.52

22.03

17.84

13.13