Table 1 The optimal hyperparameters for different regressors.

From: Prediction of loess collapsibility coefficient using bayesian optimized random forest model

Regressor

Search space

Best parameter

DecisionTree

max_depth: (1, 20), min_samples_split: (2, 20),

min_samples_leaf: (1, 20)

8

2

1

Ridge

alpha: (0.001, 100, ‘log-uniform’)

4.3

RandomForest

n_estimators: (10, 200),

max_depth: (3, 15),

min_samples_leaf: (1, 10),

min_samples_split: (2, 20)

152

13

1

2

SVR

C: (1e-3, 100, ‘log-uniform’),

epsilon: (0.01, 1, ‘uniform’),

gamma: (1e-3, 1, ‘log-uniform’),

kernel: [‘linear’, ‘poly’, ‘rbf’,‘sigmoid’]

100

0.026

0.503

rbf

LGBM

num_leaves: (10, 100),

learning_rate: (0.001, 100, ‘log-uniform’),

n_estimators: (100, 1000),

min_data_in_leaf: (10, 100),

max_depth: (3, 10)

20

0.03

629

10

7

xGBoost

learning_rate: (0.001, 0.1),

n_estimators: (100, 1000),

max_depth: (3, 10),

min_child_weight: (1,9)

0.1,

470

10

9