Table 1 Simulation results of \(\gamma _1\), \(\gamma _2\) under MCAR mechanism, reporting the estimated bias, mean squared error (MSE), and 95% confidence interval coverage in percentage (Coverage), along with corresponding Monte Carlo standard errors (MCSE) of estimate (Est).

From: A two-stage joint model approach to handle incomplete time dependent markers in survival data through inverse probability weight and multiple imputation

  

n=100

cc

locf

twos

mi

wmi

Est

MCSE

Est

MCSE

Est

MCSE

Est

MCSE

Est

MCSE

\(\gamma _1\)

Bias

0.089

0.128

0.064

0.124

0.020

0.083

0.082

0.090

0.174

0.055

MSE

0.016

0.002

0.015

0.003

0.007

0.001

0.008

0.001

0.003

0.000

Coverage

94.0

2.375

95.0

1.940

90.0

3.000

93.0

2.551

96.0

1.960

\(\gamma _2\)

Bias

-0.913

0.745

0.570

0.777

0.352

0.522

-0.578

0.622

8.062

0.482

MSE

0.557

0.092

0.601

0.094

0.271

0.042

0.387

0.051

0.880

0.083

Coverage

95.0

2.179

97.0

1.900

97.0

1.706

90.0

3.000

80.0

3.984

  

n=200

\(\gamma _1\)

Bias

0.060

0.128

0.033

0.122

0.030

0.088

0.030

0.062

0.167

0.058

MSE

0.016

0.002

0.015

0.002

0.008

0.001

0.004

0.001

0.004

0.001

Coverage

93.0

2.551

93.0

2.551

92.0

2.713

95.0

2.179

97.0

2.120

\(\gamma _2\)

Bias

-0.828

0.735

1.188

0.824

8.445

0.503

-0.363

0.425

0.059

0.498

MSE

0.542

0.091

0.686

0.080

0.963

0.093

0.180

0.021

0.246

0.034

Coverage

96.0

1.960

95.0

2.179

61.0

4.877

96.0

1.960

98.0

2.110

  

n=300

\(\gamma _1\)

Bias

-0.003

0.118

0.021

0.084

0.011

0.094

0.026

0.062

0.028

0.056

MSE

0.014

0.002

0.007

0.001

0.009

0.001

0.004

0.001

0.003

0.000

Coverage

93.0

2.551

89.0

3.129

96.0

2.110

95.0

2.179

98.0

1.400

\(\gamma _2\)

Bias

9.447

0.734

0.326

0.518

-0.502

0.544

-0.316

0.427

0.450

0.483

MSE

1.426

0.164

0.267

0.041

0.296

0.048

0.182

0.023

0.233

0.029

Coverage

74.0

4.386

97.0

1.706

97.0

2.050

97.0

1.706

93.0

2.551

  1. The actual values of the entries in the tables are like: true value = (table value)/100 and 0.000 denotes \(<0.0001\).