Table 2 Simulation results of model parameter \(\gamma _1\), \(\gamma _2\) under MAR mechanism, reporting the estimated bias, mean squared error (MSE), and 95% confidence interval coverage in percentage (Coverage), along with corresponding Monte Carlo standard errors (MCSE) of estimate (Est).

From: A two-stage joint model approach to handle incomplete time dependent markers in survival data through inverse probability weight and multiple imputation

  

n=100

cc

locf

twos

mi

wmi

Est

MCSE

Est

MCSE

Est

MCSE

Est

MCSE

Est

MCSE

\(\gamma _1\)

Bias

0.097

0.121

0.040

0.123

0.024

0.083

0.086

0.090

0.169

0.058

MSE

0.015

0.002

0.015

0.002

0.007

0.001

0.008

0.001

0.004

0.001

Coverage

95.0

2.179

93.0

2.551

97.0

2.040

93.0

2.551

96.0

1.960

\(\gamma _2\)

Bias

9.414

0.750

1.311

0.820

0.312

0.521

-0.569

0.621

0.036

0.501

MSE

1.444

0.138

0.682

0.081

0.270

0.041

0.385

0.051

0.249

0.035

Coverage

65.0

4.770

95.0

2.179

96.0

3.100

90.0

3.000

93.0

2.551

  

n=200

\(\gamma _1\)

Bias

0.046

0.128

0.037

0.121

0.010

0.094

-0.015

0.058

0.036

0.056

MSE

0.016

0.002

0.015

0.002

0.009

0.001

0.003

0.000

0.003

0.000

Coverage

97.0

2.150

93.0

2.551

91.0

2.862

93.0

2.551

98.0

1.400

\(\gamma _2\)

Bias

-0.869

0.739

1.169

0.819

-0.496

0.542

10.034

0.406

0.546

0.475

MSE

0.548

0.091

0.678

0.079

0.294

0.048

1.170

0.091

0.226

0.028

Coverage

96.0

2.156

95.0

2.179

95.0

2.179

32.0

4.665

94.0

2.375

  

n=300

\(\gamma _1\)

bias

0.064

0.124

0.043

0.075

0.100

0.092

0.018

0.062

0.031

0.056

MSE

0.015

0.003

0.006

0.001

0.008

0.001

0.004

0.001

0.003

0.000

Coverage

95.0

2.179

94.0

2.375

92.0

2.713

100.0

0.000

98.0

1.400

\(\gamma _2\)

Bias

0.419

0.783

10.049

0.481

-0.529

0.631

-0.291

0.429

0.458

0.483

MSE

0.609

0.095

1.239

0.097

0.397

0.051

0.183

0.024

0.233

0.029

Coverage

93.0

2.551

44.0

4.964

90.0

3.000

97.0

2.010

93.0

2.551

  1. All reported estimates are scaled by a factor of 100; the true parameter value equals (table value)/100 and 0.000 denotes \(<0.0001\).