Table 3 Simulation results of \(\gamma _1\), \(\gamma _2\) under MNAR mechanism, reporting the estimated bias, mean squared error (MSE), and 95% confidence interval coverage in percentage (Coverage), along with corresponding Monte Carlo standard errors (MCSE) of estimate (Est).

From: A two-stage joint model approach to handle incomplete time dependent markers in survival data through inverse probability weight and multiple imputation

  

n=100

cc

locf

twos

mi

wmi

Est

MCSE

Est

MCSE

Est

MCSE

Est

MCSE

Est

MCSE

\(\gamma _1\)

Bias

0.062

0.128

0.111

0.109

-0.011

0.096

0.084

0.091

0.170

0.058

MSE

0.016

0.002

0.012

0.002

0.009

0.001

0.008

0.001

0.004

0.001

Coverage

93.0

2.551

94.0

2.375

90.0

3.000

100.0

0.000

96.0

1.960

\(\gamma _2\)

Bias

-0.825

0.737

7.946

0.723

-0.481

0.557

-0.566

0.622

0.033

0.501

MSE

0.545

0.091

1.149

0.137

0.309

0.049

0.386

0.050

0.249

0.035

Coverage

96.0

1.960

77.0

4.208

95.0

2.179

96.0

2.200

93.0

2.551

  

n=200

\(\gamma _1\)

Bias

0.031

0.126

0.033

0.120

0.010

0.093

0.026

0.062

0.061

0.055

MSE

0.016

0.003

0.014

0.002

0.009

0.001

0.004

0.001

0.003

0.000

Coverage

96.0

1.960

96.0

1.950

91.0

2.862

96.0

1.960

98.0

1.400

\(\gamma _2\)

Bias

0.446

0.790

1.195

0.824

-0.508

0.541

-0.322

0.428

7.005

0.470

MSE

0.620

0.094

0.687

0.078

0.293

0.048

0.183

0.023

0.710

0.079

Coverage

94.0

2.375

96.0

2.040

95.0

2.179

96.0

1.960

85.0

2.877

  

n=300

\(\gamma _1\)

Bias

0.063

0.125

0.019

0.083

0.071

0.084

0.176

0.058

0.027

0.057

MSE

0.015

0.003

0.007

0.001

0.007

0.001

0.004

0.001

0.003

0.000

Coverage

95.0

2.179

90.0

3.000

92.0

2.713

96.0

1.960

97.0

1.977

\(\gamma _2\)

Bias

0.413

0.783

0.343

0.523

6.392

0.583

0.002

0.509

0.451

0.487

MSE

0.609

0.095

0.272

0.042

0.745

0.091

0.257

0.036

0.237

0.029

Coverage

93.0

2.551

97.0

1.706

71.0

4.538

92.0

2.713

97.0

1.560

  1. All reported estimates are scaled by a factor of 100; the true parameter value equals (table value)/100 and 0.000 denotes \(<0.0001\).