Table 2 Performance comparison of the machine learning models in the validation set.
Models | AUC | Balanced accuracy | Sensitivity | Specificity | PPV | NPV | Kappa |
---|---|---|---|---|---|---|---|
SVM | 0.753 | 0.701 | 0.587 | 0.816 | 0.433 | 0.587 | 0.355 |
XGBoost | 0.841 | 0.778 | 0.845 | 0.711 | 0.412 | 0.950 | 0.397 |
DT | 0.772 | 0.751 | 0.781 | 0.721 | 0.402 | 0.932 | 0.370 |
RF | 0.835 | 0.661 | 0.413 | 0.909 | 0.520 | 0.866 | 0.349 |
LR | 0.830 | 0.764 | 0.890 | 0.638 | 0.371 | 0.960 | 0.345 |
KNN | 0.516 | 0.516 | 0.065 | 0.967 | 0.323 | 0.812 | 0.046 |
ANN | 0.644 | 0.501 | 0.903 | 0.099 | 0.194 | 0.810 | 0.001 |