Table 7 Machine learning performance with NasNetMobile backbone.

From: Pyramidal attention-based T network for brain tumor classification: a comprehensive analysis of transfer learning approaches for clinically reliable and reliable AI hybrid approaches

Model

\(\boldsymbol{\alpha }\)

\({\varvec{\pi}}\)

\({\varvec{\rho}}\)

\({\varvec{\phi}}1\)

\({\varvec{\sigma}}\)

\({\varvec{\lambda}}\)

\({\varvec{\kappa}}\)

\({\varvec{\eta}}\)

Random

forest

classifier

85.74

86.52

82.04

83.26

82.04

97.03

77.07

72.39

Decision

tree

classifier

83.55

82.19

82.84

82.33

82.84

94.23

74.47

70.63

Adaboost

classifier

67.2

61.47

60.09

59.47

60.09

78.32

46.14

46.18

K Neighbors

classifier

94.42

94.45

93.2

93.74

93.2

98.91

91.19

88.46

Gaussian

Nb

94.71

94.33

94.32

94.32

94.32

95.8

91.71

89.34

Logistic

regression

98.92

98.77

98.85

98.81

98.85

99.92

98.31

97.65