Table 10 Comparative analysis of HDLID-ECSOA model under ToN-IoT dataset21,35,36,37,38.

From: Leveraging hybrid deep learning with starfish optimization algorithm based secure mechanism for intelligent edge computing in smart cities environment

ToN-IoT Dataset

Approach

\(\:\varvec{A}\varvec{c}\varvec{c}{\varvec{u}}_{\varvec{y}}\)

\(\:\varvec{P}\varvec{r}\varvec{e}{\varvec{c}}_{\varvec{n}}\)

\(\:\varvec{R}\varvec{e}\varvec{c}{\varvec{a}}_{\varvec{l}}\)

\(\:{\varvec{F}}_{\varvec{M}\varvec{e}\varvec{a}\varvec{s}\varvec{u}\varvec{r}\varvec{e}}\)

LSTM

97.67

89.96

81.23

81.89

RF

89.53

89.92

86.14

80.11

AdaBoost

89.92

89.66

79.65

84.61

kNN Algorithm

94.58

89.89

80.25

82.15

XGBoost

91.95

89.75

81.21

78.61

CART Method

95.89

89.30

83.58

80.63

1D CNN

97.46

89.87

82.86

84.56

EPCOD

90.15

90.57

86.90

80.88

DNN

90.42

90.33

80.18

85.15

EEDOS

95.29

90.41

80.83

82.87

HDLID-ECSOA

99.33

91.37

87.07

88.54