Table 12 Error analysis of HDLID-ECSOA method with existing models under ToN-IoT dataset.

From: Leveraging hybrid deep learning with starfish optimization algorithm based secure mechanism for intelligent edge computing in smart cities environment

ToN-IoT Dataset

Approach

\(\:\varvec{A}\varvec{c}\varvec{c}{\varvec{u}}_{\varvec{y}}\)

\(\:\varvec{P}\varvec{r}\varvec{e}{\varvec{c}}_{\varvec{n}}\)

\(\:\varvec{R}\varvec{e}\varvec{c}{\varvec{a}}_{\varvec{l}}\)

\(\:{\varvec{F}}_{\varvec{M}\varvec{e}\varvec{a}\varvec{s}\varvec{u}\varvec{r}\varvec{e}}\)

LSTM

2.33

10.04

18.77

18.11

RF

10.47

10.08

13.86

19.89

AdaBoost

10.08

10.34

20.35

15.39

kNN Algorithm

5.42

10.11

19.75

17.85

XGBoost

8.05

10.25

18.79

21.39

CART Method

4.11

10.70

16.42

19.37

1D CNN

2.54

10.13

17.14

15.44

EPCOD

9.85

9.43

13.10

19.12

DNN

9.58

9.67

19.82

14.85

EEDOS

4.71

9.59

19.17

17.13

HDLID-ECSOA

0.67

8.63

12.93

11.46