Table 6 Comparison of Post-Hoc detection with our method.

From: Daily insider threat detection with hybrid TCN transformer architecture

method

Precision

Accuracy

F1_score

AUC

Recall

StackedCNN-attentionalBiGRUmodel36

0.98

0.92

0.96

0.95

0.95

FCVM37

0.91

0.90

0.85

0.86

0.85

LSTM38

0.90

0.86

0.83

0.85

0.86

ML39

0.88

0.85

0.91

0.72

0.87

DL-BERT40

0.82

0.75

0.84

0.90

0.90

CBSigIDS41

0.85

0.84

0.83

0.81

0.82

TLDANN42

0.87

0.88

0.88

0.85

0.87

LSTMandstackedGRU-basedattentionmodel43

0.89

0.91

0.93

0.92

0.91

LSTM44

0.88

0.87

0.91

0.79

0.88

Cyber-PersonaIdentification45

0.81

0.85

0.89

0.88

0.79

Fine-grainedapproach46

0.84

0.88

0.90

0.78

0.88

OriginalTransformer47

0.98

0.93

0.89

0.97

0.81

DistilledTrans47

0.97

0.94

0.91

0.97

0.84

BERT+FL47

0.93

0.96

0.96

0.96

0.95

Roberta+FL47

0.95

0.97

0.94

0.96

0.94

Hybrid Learning Approach47

0.85

0.88

0.85

0.84

0.84

Transformer+TCN

0.49

0.97

0.65

0.984

0.95