Table 6 Comparison of Post-Hoc detection with our method.
From: Daily insider threat detection with hybrid TCN transformer architecture
method | Precision | Accuracy | F1_score | AUC | Recall |
---|---|---|---|---|---|
StackedCNN-attentionalBiGRUmodel36 | 0.98 | 0.92 | 0.96 | 0.95 | 0.95 |
FCVM37 | 0.91 | 0.90 | 0.85 | 0.86 | 0.85 |
LSTM38 | 0.90 | 0.86 | 0.83 | 0.85 | 0.86 |
ML39 | 0.88 | 0.85 | 0.91 | 0.72 | 0.87 |
DL-BERT40 | 0.82 | 0.75 | 0.84 | 0.90 | 0.90 |
CBSigIDS41 | 0.85 | 0.84 | 0.83 | 0.81 | 0.82 |
TLDANN42 | 0.87 | 0.88 | 0.88 | 0.85 | 0.87 |
LSTMandstackedGRU-basedattentionmodel43 | 0.89 | 0.91 | 0.93 | 0.92 | 0.91 |
LSTM44 | 0.88 | 0.87 | 0.91 | 0.79 | 0.88 |
Cyber-PersonaIdentification45 | 0.81 | 0.85 | 0.89 | 0.88 | 0.79 |
Fine-grainedapproach46 | 0.84 | 0.88 | 0.90 | 0.78 | 0.88 |
OriginalTransformer47 | 0.98 | 0.93 | 0.89 | 0.97 | 0.81 |
DistilledTrans47 | 0.97 | 0.94 | 0.91 | 0.97 | 0.84 |
BERT+FL47 | 0.93 | 0.96 | 0.96 | 0.96 | 0.95 |
Roberta+FL47 | 0.95 | 0.97 | 0.94 | 0.96 | 0.94 |
Hybrid Learning Approach47 | 0.85 | 0.88 | 0.85 | 0.84 | 0.84 |
Transformer+TCN | 0.49 | 0.97 | 0.65 | 0.984 | 0.95 |