Table 12 Training and validation results for the models.
From: Attention-Enhanced CNNs and transformers for accurate monkeypox and skin disease detection
Trial | Edge loss weight | Learning rate | Mini batch size | Training accuracy (%) | Training loss | Validation accuracy (%) | Validation loss |
---|---|---|---|---|---|---|---|
EfficientNet B0 | |||||||
1 | - | 0.001 | 32 | 98.07 | 0.0582 | 94.81 | 0.1634 |
2 | - | 0.001 | 32 | 97.32 | 0.0799 | 95.01 | 0.1814 |
3 | 0.5 (Canny) | 0.001 | 32 | 98.60 | 0.0634 | 94.74 | 0.1682 |
4 | 0.5 (Canny) | 0.001 | 32 | 96.87 | 0.1167 | 93.28 | 0.2031 |
MobileNet V2 | |||||||
1 | - | 0.001 | 32 | 100.0 | 0.0006 | 98.67 | 0.0552 |
2 | 0.5 (Sobel) | 0.001 | 32 | 99.10 | 0.1753 | 97.01 | 0.2493 |
3 | 0.1 (Sobel) | 0.001 | 32 | 100.0 | 0.0293 | 99.00 | 0.0886 |
4 | 0.05 (Sobel) | 0.001 | 32 | 99.90 | 0.0179 | 98.47 | 0.1019 |
5 | 0.025 (Sobel) | 0.001 | 32 | 99.75 | 0.0152 | 98.20 | 0.0750 |
ResNet-50 | |||||||
1 | - | 0.001 | 32 | 96.44 | 0.0980 | 94.75 | 0.1620 |
Xception | |||||||
1 | - | 0.001 | 32 | 99.86 | 0.0156 | 99.92 | 0.0113 |
Swin Transformer | |||||||
1 | - | 0.001 | 32 | 99.24 | 0.4985 | 98.03 | 0.4870 |
2 | - | 0.001 | 32 | 99.63 | 0.4358 | 98.88 | 0.4519 |