Table 3 Abnormal detection and localization results on magnetic tiles.

From: A novel dual-student reverse knowledge distillation method for magnetic tile defect detection

Model

Image Auroc

Pixel Auroc

Pixel Aupro

Image F1

Image ACC

Flops(G)

Parameters(M)

FOD

0.848

0.779

0.683

0.806

0.885

37.49

42.61

CKAAD

0.854

0.697

0.742

0.889

0.816

26.87

2.97

SimpleNet

0.768

0.706

0.712

0.873

0.786

150.72

72.82

PBAS

0.871

0.692

0.723

0.897

0.832

108.13

27.66

FastFlow

0.884

0.732

0.709

0.901

0.832

9.12

5.57

RD4AD

0.947

0.717

0.703

0.947

0.918

162.22

89.58

IKD

0.965

0.815

0.751

0.929

0.954

164.92

59.09

BSDRD

0.974

0.802

0.793

0.972

0.957

133.23

101.08

  1. We reported the results of seven metrics.