Table 4 Comparison test of different methods.
From: ALDP-FL for adaptive local differential privacy in federated learning
Dataset | Model | Approach | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|
MNIST | LeNet-5 | FedAvg | 0.9961 | 0.9984 | 0.9957 | 0.9970 |
Fed-DPA | 0.8735 | 0.8741 | 0.8745 | 0.8743 | ||
GFL-ALDPA | 0.9218 | 0.9250 | 0.9226 | 0.9238 | ||
LDP-Fed | 0.9150 | 0.9138 | 0.9144 | 0.9141 | ||
ALDP-FL | 0.9725 | 0.9701 | 0.9750 | 0.9725 | ||
ResNet18 | FedAvg | 0.9996 | 0.9997 | 0.9986 | 0.9991 | |
Fed-DPA | 0.9213 | 0.9230 | 0.9237 | 0.9233 | ||
GFL-ALDPA | 0.9512 | 0.9535 | 0.9536 | 0.9535 | ||
LDP-Fed | 0.9531 | 0.9538 | 0.9547 | 0.9542 | ||
ALDP-FL | 0.9823 | 0.9818 | 0.9781 | 0.9799 | ||
Fashion MNIST | LeNet-5 | FedAvg | 0.9135 | 0.9146 | 0.9134 | 0.9140 |
Fed-DPA | 0.7327 | 0.7318 | 0.7340 | 0.7329 | ||
GFL-ALDPA | 0.8341 | 0.8343 | 0.8327 | 0.8335 | ||
LDP-Fed | 0.8120 | 0.8115 | 0.8147 | 0.8131 | ||
ALDP-FL | 0.8528 | 0.8519 | 0.8524 | 0.8521 | ||
ResNet18 | FedAvg | 0.9542 | 0.9537 | 0.9523 | 0.9530 | |
Fed-DPA | 0.8148 | 0.8099 | 0.8139 | 0.8119 | ||
GFL-ALDPA | 0.8835 | 0.8832 | 0.8831 | 0.8831 | ||
LDP-Fed | 0.8640 | 0.8649 | 0.8627 | 0.8638 | ||
ALDP-FL | 0.9129 | 0.9123 | 0.9092 | 0.9107 | ||
CIFAR-10 | LeNet-5 | FedAvg | 0.6931 | 0.6920 | 0.6946 | 0.6933 |
Fed-DPA | 0.4841 | 0.4837 | 0.4829 | 0.4833 | ||
GFL-ALDPA | 0.5738 | 0.5728 | 0.5725 | 0.5726 | ||
LDP-Fed | 0.5449 | 0.5438 | 0.5441 | 0.5439 | ||
ALDP-FL | 0.6132 | 0.6137 | 0.6171 | 0.6154 | ||
ResNet18 | FedAvg | 0.9146 | 0.9136 | 0.9141 | 0.9138 | |
Fed-DPA | 0.7241 | 0.7245 | 0.7233 | 0.7239 | ||
GFL-ALDPA | 0.8040 | 0.8037 | 0.8028 | 0.8032 | ||
LDP-Fed | 0.7533 | 0.7541 | 0.7534 | 0.7537 | ||
ALDP-FL | 0.8526 | 0.8476 | 0.8518 | 0.8497 |