Table 14 Validation theorem conditions using the Allsvenskan dataset.
Theorem | Parameters | Condition | Value | Satisfied or not |
---|---|---|---|---|
Non-robust estimator | ||||
Theorem 1 | - | \(\sum _{j=1}^{r}\frac{1}{\omega _{j}} - \frac{\omega _j^2{(\omega }_j+d)^2\psi _{jj}}{(\omega _j+k)^2(\omega _j+1)^2}\) | 35.307 | Satisfied |
Theorem 2 | k=\({\hat{k}}_1\) | \(\sum _{j=1}^{r}\frac{\omega _j}{(\omega _j+k)^2} - \frac{\omega _j^2{(\omega }_j+d)^2\psi _{jj}}{(\omega _j+k)^2(\omega _j+1)^2}\) | 21.202 | Satisfied |
k=\({\hat{k}}_2\) | \(\sum _{j=1}^{r}\frac{\omega _j}{(\omega _j+k)^2} - \frac{\omega _j^2{(\omega }_j+d)^2\psi _{jj}}{(\omega _j+k)^2(\omega _j+1)^2}\) | 13.999 | Satisfied | |
Theorem 3 | k=\({\hat{k}}_1\), d=\({\hat{d}}\) | \(\sum _{j=1}^r \frac{\omega _j}{(\omega _j+k(d+1))^2} - \frac{\omega _j^2{(\omega }_j+d)^2\psi _{jj}}{(\omega _j+k)^2(\omega _j+1)^2}\) | 13.999 | Satisfied |
k=\({\hat{k}}_2\), d=\({\hat{d}}\) | \(\sum _{j=1}^r \frac{\omega _j}{(\omega _j+k(d+1))^2} - \frac{\omega _j^2{(\omega }_j+d)^2\psi _{jj}}{(\omega _j+k)^2(\omega _j+1)^2}\) | 12.783 | Satisfied | |
Theorem 4 | k=\({\hat{k}}_1\), d=\({\hat{d}}\) | \(\sum _{j=1}^r \frac{\omega _j{(\omega }_j+d)^2}{(\omega _j+k)^2(\omega _j+1)^2} - \frac{\omega _j^2{(\omega }_j+d)^2\psi _{jj}}{(\omega _j+k)^2(\omega _j+1)^2}\) | 16.492 | Satisfied |
k=\({\hat{k}}_2\), d=\({\hat{d}}\) | \(\sum _{j=1}^r \frac{\omega _j{(\omega }_j+d)^2}{(\omega _j+k)^2(\omega _j+1)^2} - \frac{\omega _j^2{(\omega }_j+d)^2\psi _{jj}}{(\omega _j+k)^2(\omega _j+1)^2}\) | 15.413 | Satisfied | |
Robust estimator | ||||
Theorem 5 | - | \(\sum _{j=1}^{r}\psi _{jj} - \frac{\omega _j^2{(\omega }_j+d)^2\psi _{jj}}{(\omega _j+k)^2(\omega _j+1)^2}\) | 14.439 | Satisfied |
Theorem 6 | k=\({\hat{k}}_1\) | \(\sum _{j=1}^{r}\frac{\omega _j^2\psi _{jj}}{(\omega _j+k)^2} - \frac{\omega _j^2{(\omega }_j+d)^2\psi _{jj}}{(\omega _j+k)^2(\omega _j+1)^2}\) | 12.489 | Satisfied |
k=\({\hat{k}}_2\) | \(\sum _{j=1}^{r}\frac{\omega _j^2\psi _{jj}}{(\omega _j+k)^2} - \frac{\omega _j^2{(\omega }_j+d)^2\psi _{jj}}{(\omega _j+k)^2(\omega _j+1)^2}\) | 11.365 | Satisfied | |
Theorem 7 | k=\({\hat{k}}_1\), d=\({\hat{d}}\) | \(\sum _{j=1}^r \frac{\omega _j^2\psi _{jj}}{(\omega _j+k(d+1))^2} - \frac{\omega _j^2{(\omega }_j+d)^2\psi _{jj}}{(\omega _j+k)^2(\omega _j+1)^2}\) | 11.365 | Satisfied |
k=\({\hat{k}}_2\), d=\({\hat{d}}\) | \(\sum _{j=1}^r \frac{\omega _j^2\psi _{jj}}{(\omega _j+k(d+1))^2} - \frac{\omega _j^2{(\omega }_j+d)^2\psi _{jj}}{(\omega _j+k)^2(\omega _j+1)^2}\) | 11.566 | Satisfied |