Table 1 Assessment metrics for machine learning models: performance during all segments.

From: Data-driven frameworks to robustly predict solubility parameter of diverse polymers

Model

R²

RMSE

MRD%

Training

Validation

Testing

Training

Validation

Testing

Training

Validation

Testing

Linear Regression

0.751

0.745

0.763

2223

2040

2242

11.5

11.3

6.3

Ridge Regression

0.751

0.748

0.763

2223

2029

2238

13.3

12.8

6.4

Lasso Regression

0.751

0.751

0.765

2224

2016

2232

11.4

16.7

6.4

Elastic Net

0.751

0.749

0.764

2223

2023

2236

15.6

14.3

6.3

Gradient Boosting

0.987

0.884

0.888

503

1376

1540

2.0

4.3

5.9

Random Forest

0.987

0.884

0.888

503

1376

1540

2.0

4.3

5.0

XGBoost

1.000

0.827

0.828

0

1678

1910

0.0

5.1

4.9

LightGBM

0.960

0.847

0.849

887

1577

1786

1.7

4.6

5.3

CatBoost

0.961

0.870

0.893

875

1455

1503

3.3

4.3

6.2

SVR

0.904

0.884

0.863

1382

1373

1705

2.7

3.3

4.4

KNN

0.877

0.801

0.792

1560

1803

2097

4.2

5.6

4.0

Decision Tree

1.000

0.744

0.695

10

2045

2540

0.0

7.2

3.7

ANN

0.968

0.838

0.914

798

1626

1351

3.0

4.3

4.3

CNN

0.941

0.877

0.917

1079

1415

1329

3.8

4.3

4.6