Table 7 Comparison with State-of-art.

From: Deep learning model for early acute lymphoblastic leukemia detection using microscopic images

References

Technique

Dataset / No. of images

Accuracy (%)

4

Bayesian-based CNN

ALL-IDB / 368

93.5

5

Efficient channel attention + VGG16

C-NMC2019 / 7272

91.1

6

ALLNET

C-NMC2019 / 7272

95.54

7

VGG16

CodaLab / 8491

84.62

82

19 layer CNN

Public / 293

93.18

9

IoT Model

ALL-IDB / 179

95.5

27

EfficientB0

Public / 3242

72

23

DarkNet19 ESA

Public / 3256

98.52

24

SVM

ALL-IDB / 260

97.4

22

ResNet50

ALL-PBS / 3242

99.38

28

MobileNetV2

ALL-PBS / 3256

97.4

26

CNN

C-NMC2019 / 7272

93.9

25

Ensemble-ALL

C-NMC2019 / 7272

96.26

29

Deep Dilated CNN

Public / 362

91.98

Proposed

Adam Optimized Deep CNN

Acute Lymphoblastic Leukemia

96.00