Table 1 Hyperparameters and tuned values for Deep-CTGAN and ResNet.

From: An enhancement of machine learning model performance in disease prediction with synthetic data generation

Model component

Parameter

Tuned value

Deep-CTGAN

Learning rate

0.0002

Batch size

128

Embedding dimension

128–256 (dataset-specific)

Number of epochs

300

Generator activation

LeakyReLU

Discriminator activation

LeakyReLU

Optimizer

Adam

Adam betas

(0.5, 0.999)

Mode-specific normalization

Enabled

Gradient penalty

Applied

Conditional vector encoding

Used for class labels

ResNet (integrated)

Network depth

ResNet-18

Residual block type

Basic Block

Dropout rate

0.3

Weight decay

1e-5

Activation function

ReLU

Optimizer

Adam

Learning rate

0.0001

Batch normalization

Enabled