Table 4 AUC value comparison of classification using various synthetic data augmentation techniques.

From: An enhancement of machine learning model performance in disease prediction with synthetic data generation

Data

Model

XGB

RF

KNN

TabNet

COVID-19

Original

96.5

96.8

96.2

97.3

SMOTE

96.2

96

95.5

96.5

ADASYN

95.9

95.8

95

96.3

CTGAN

95.5

95.3

95

96

ADASYN + DCTGAN-ResNet (Proposed)

97

96.9

96.5

98

Kidney

Original

96.3

96.5

96

97.5

SMOTE

96.1

96

95.8

96.8

ADASYN

95.9

95.6

95.5

96.7

CTGAN

95.5

95.2

95

96.2

ADASYN + DCTGAN-ResNet(Proposed)

97.2

96.8

96.5

98

Dengue

Original

96.5

96.3

96

97.5

SMOTE

96.2

96

95.8

96.8

ADASYN

95.9

95.7

95.5

96.7

CTGAN

95.5

95.2

95

96.3

SMOTE + DCTGAN-ResNet(Proposed)

97

96.9

96.5

98.2