Table 1 Summary of mean central tendency, dispersion, and shape characteristics of the EOLxPL distribution.

From: A novel extension of the power lindley distribution with statistical properties and application to COVID-19 data

Parameter

Mean

Variance

Coefficient of Variation

Skewness

Kurtosis

\(\alpha = 1.50\)

\(\beta = 2.50\)

\(\gamma = 1.95\)

\(\delta = 0.85\)

\(\lambda = 0.05\)

5.61635

25.2758

0.89516

0.65171

2.10940

\(\lambda = 0.10\)

2.84852

5.81715

0.84671

0.47223

2.41918

\(\lambda = 0.25\)

1.80987

1.90702

0.76301

0.26445

1.96341

\(\lambda = 0.50\)

1.49211

0.79737

0.59845

0.18608

2.20205

\(\lambda = 0.70\)

1.39613

0.49149

0.50214

0.15032

2.42726

\(\alpha = 2.0\)

\(\beta = 3.75\)

\(\gamma = 1.85\)

\(\delta = 0.80\)

\(\lambda = 0.05\)

6.17516

28.4279

0.86342

0.63795

2.17368

\(\lambda = 0.10\)

3.16184

6.57713

0.81112

0.33504

2.22857

\(\lambda = 0.25\)

1.99197

2.19961

0.74454

0.21640

1.92501

\(\lambda = 0.50\)

1.61523

0.89149

0.58455

0.13307

2.16731

\(\lambda = 0.70\)

1.50178

0.55373

0.49550

0.05869

2.34082

\(\alpha = 2.5\)

\(\beta = 5.0\)

\(\gamma = 1.75\)

\(\delta = 0.75\)

\(\lambda = 0.05\)

6.77478

31.7224

0.83136

0.59127

2.22469

\(\lambda = 0.10\)

3.53225

7.58454

0.77967

0.15351

1.86388

\(\lambda = 0.25\)

2.20497

2.64973

0.73824

0.19499

1.90442

\(\lambda = 0.50\)

1.75655

1.05679

0.58524

0.09785

2.13157

\(\lambda = 0.70\)

1.61923

0.64030

0.49418

0.01915

2.29634

\(\alpha = 3.0\)

\(\beta = 6.5\)

\(\gamma = 1.65\)

\(\delta = 0.70\)

\(\lambda = 0.05\)

7.76194

37.5823

0.78981

0.51227

2.24758

\(\lambda = 0.10\)

4.20837

10.1361

0.75652

0.10618

1.83512

\(\lambda = 0.25\)

2.51928

3.44757

0.73702

0.17945

1.88892

\(\lambda = 0.50\)

1.96573

1.32371

0.58529

0.08622

2.13228

\(\lambda = 0.70\)

1.79420

0.79669

0.49748

0.02252

2.31681