Table 8 Hyperparameters of the baseline models.

From: Time series transformer for tourism demand forecasting

Model

Dataset

Jiuzhaigou Valley

Siguniang Mountain

(seasonal) Naive

S = 1 for single step, S = 7 for multistep

ARIMA

p = 4, d = 1, q = 4

p = 4, d = 1, q = 3

ARIMAX

p = 4, d = 1, q = 4

p = 4, d = 1, q = 3

SARIMA

p = 4, d = 1, q = 4, P = 1, D = 0, Q = 1, S = 7

p = 4, d = 1, q = 3, P = 0, D = 1, Q = 1, S = 7

SARIMAX

p = 4, d = 1, q = 4; P = 1, D = 0, Q = 1, S = 7

p = 4, d = 1, q = 3, P = 0, D = 1, Q = 1, S = 7

SVR

kernel = rbf, gamma = 0.01, C = 1, epsilon = 1e-5

kernel = rbf, gamma = 0.001, C = 10, epsilon = 1e-5

k-NN

neighbors = 5, leaf size = 5, p = 2

neighbors = 10, leaf size = 5, p = 1

ANN

hidden layers = 2, learning rare = 1e-2, hidden size = 128

LSTM

hidden size = 128, learning rare = 1e-2