Table 4 Performance comparison of data-driven and statistical methods on various metrics. The best result for each metric within each category is highlighted in bold.

From: Dual graph attention network for robust fault diagnosis in photovoltaic inverters

Data driven methods

Statistical-based methods

Method

F1-score

Test acc

Precision

Recall

Method

F1-score

Test acc

Precision

Recall

ANN46

0.889

91.21%

0.900

0.879

SVM47

0.803

85.37%

0.820

0.789

CNN48

0.903

92.43%

0.914

0.885

KNN49

0.784

84.12%

0.792

0.780

RNN50

0.912

94.12%

0.922

0.905

RF51

0.830

87.11%

0.846

0.816

GAT52

0.918

95.18%

0.930

0.898

DT53

0.825

86.53%

0.831

0.809

GRU + Attention54

0.914

93.74%

0.921

0.906

BC

0.834

87.82%

0.843

0.828

TCN55

0.918

94.28%

0.926

0.910

     

Transformer56

0.938

95.63%

0.944

0.931

     

ResNet-1D57

0.912

93.91%

0.919

0.905

     

InceptionTime58

0.946

96.07%

0.951

0.941

     

LightGBM + SHAP59

0.856

88.92%

0.861

0.852

     

DualGAT (proposed)

0.971

97.35%

0.979

0.982