Table 2 Comparative performance of proposed model vs. State-of-the-Art techniques.

From: Optimization and predictive performance of fly ash-based sustainable concrete using integrated multitask deep learning framework with interpretable machine learning techniques

Reference

Model Type

Dataset Size

R² Score

MSE (MPa²)

SHAP Max Value

LIME Fidelity

Jibril et al.3

Evolutionary Algorithm-Based

900

0.84

3.20

0.15

0.80

Li et al.8

XGBoost with Squirrel Search Tuning

1000

0.86

3.00

0.18

0.82

Kashem & Das39

Hybrid ML with SHAP

850

0.88

2.80

0.20

0.85

Shubham et al.48

Deep Neural Network

950

0.87

2.95

0.17

0.83

Saxena et al.15

Regression Analysis

800

0.88

2.90

0.18

0.84

Proposed Model (Current Study)

Hybrid XGBoost-DNN + AutoML + MTL

1030

0.91

2.45

0.25

0.88