Table 10 Quality analysis of recovered image after denoising using CNN.

From: Convolutional neural network and wavelet composite against geometric attacks a watermarking approach

Noise

SSIM

NC

Gaussian filtering (3 × 3)

0.9991

0.998

Gaussian filtering (5 × 5)

0.9999

0.999

Gaussian filtering (9 × 9)

0.9992

0.997

Median filtering (3 × 3)

0.9999

0.998

Median filtering (5 × 5)

0.9996

0.997

Average filtering (3 × 3)

0.9997

0.998

Average filtering (5 × 5)

0.9996

0.998

JPEG compression (Q = 30)

0.9998

0.998

JPEG compression (Q = 60)

0.9993

0.998

JPEG compression (Q = 90)

0.9949

0.945

Contrast adjustment

0.9997

0.998

Histogram equalisation

0.9996

0.998

Rotation attacks 30(degree)

0.9994

0.998

Rotation attacks 60(degree)

0.9995

0.998

Rotation attacks 90(degree)

0.9 946

0.922

Image cropping 25%

0.9996

0.998

Image cropping 35%

0.9923

0.948

Image scaling (Shrinking)

0.9993

0.998

Image scaling 1.2

0.9997

0.998

Image scaling 1.5

0.9992

0.998

Gaussian noise (m = 0,v = 0.01)

0.9999

0.998

Gaussian noise (m = 0,v = 0.05)

0.9996

0.998

Salt and pepper noise (d = 0.01)

0.9997

0.998

Salt and pepper noise (d = 0.05)

0.9994

0.998

Speckle noise (v = 0.2)

0.9992

0.998

Speckle noise (v = 0.6)

0.9991

0.998