Table 4 Imperceptibility analysis for various test images with different gain factors.
From: Convolutional neural network and wavelet composite against geometric attacks a watermarking approach
Host image | Gain factor | MSE | PSNR (dB) | SSIM | NC |
---|---|---|---|---|---|
Male | 0.01 | 0.1128 | 57.6096 | 0.9970 | 1.0000 |
0.02 | 0.4455 | 51.6424 | 0.9988 | 0.9999 | |
0.05 | 2.7517 | 43.7347 | 0.9934 | 0.9994 | |
0.1 | 10.9883 | 37.7215 | 0.9780 | 0.9977 | |
0.2 | 43.9348 | 31.7027 | 0.9364 | 0.9908 | |
Cameraman | 0.01 | 0.1160 | 57.4850 | 0.9998 | 1 |
0.02 | 0.4455 | 51.6424 | 0.9993 | 0.9999 | |
0.05 | 2.7517 | 43.7347 | 0.9963 | 0.9997 | |
0.1 | 10.9883 | 37.7215 | 0.9876 | 0.9986 | |
0.2 | 43.9348 | 31.7027 | 0.9640 | 0.9945 | |
Girl | 0.01 | 0.1160 | 57.4850 | 0.9998 | 1 |
0.02 | 0.4455 | 51.6424 | 0.9991 | 1 | |
0.05 | 2.7517 | 43.7347 | 0.9955 | 0.999 | |
0.1 | 10.9883 | 37.7215 | 0.9858 | 0.9991 | |
0.2 | 43.9348 | 31.7027 | 0.9607 | 0.9963 | |
Chemical plant | 0.01 | 0.1160 | 57.4850 | 0.9998 | 1 |
0.02 | 0.4455 | 51.6424 | 0.9940 | 0.999 | |
0.05 | 2.7517 | 43.7347 | 0.9965 | 0.997 | |
0.1 | 10.9883 | 37.7215 | 0.9875 | 0.9987 | |
0.2 | 43.9348 | 31.7027 | 0.9607 | 0.9947 |