Table 3 The hyper-parameters of the proposed method.

From: Predicting road traffic accident severity from imbalanced data using VAE attention and GCN

Network

Hyper-parameters

Values

Activation function

VAE-attention

Optimizer

Adam

Sliding window and steps L, k

5, 1

Input Layer

9

FC layer

64

Swish

FC layer

32

Swish

Flatten

Attention layer

32

softmax

FC layer

\(\mu\)

FC layer

\(\Sigma\)

FC layer

32

Swish

FC layer

64

Swish

Output Layer

9

GCN

Threshold \(\varepsilon\)

2.5

Edge index

(2,num_edges)

Input Graph

(N, 9)

GCNConv

(N,16)

Swish

Dropout

(N,16)

Swish

GCNConv

(N,4)

Log-softmax