Table 5 The comparison results under different generation methods.
From: Predicting road traffic accident severity from imbalanced data using VAE attention and GCN
CHILI | ||||||
---|---|---|---|---|---|---|
original | ADASYN | VAE | GAN | DCGAN | Ours | |
Accuracy | 0.7041 | 0.6855 | 0.6982 | 0.7041 | 0.6893 | 0.8469 |
Precision | 0.5411 | 0.6876 | 0.4675 | 0.3013 | 0.1723 | 0.8606 |
Recall | 0.2872 | 0.6868 | 0.2728 | 0.2525 | 0.2500 | 0.8469 |
F1-score | 0.2816 | 0.6863 | 0.2546 | 0.2134 | 0.2040 | 0.8449 |
NEWYORK | ||||||
Accuracy | 0.6853 | 0.5331 | 0.5816 | 0.5890 | 0.6318 | 0.8333 |
Precision | 0.4616 | 0.5369 | 0.2772 | 0.2954 | 0.3126 | 0.8399 |
Recall | 0.3705 | 0.5316 | 0.2713 | 0.2730 | 0.3352 | 0.8333 |
F1-score | 0.3565 | 0.4868 | 0.2433 | 0.2393 | 0.3199 | 0.8334 |
BRONX | ||||||
Accuracy | 0.6232 | 0.4573 | 0.5945 | 0.5932 | 0.5931 | 0.7915 |
Precision | 0.3714 | 0.4664 | 0.1486 | 0.1483 | 0.1482 | 0.7993 |
Recall | 0.2911 | 0.4574 | 0.2500 | 0.2500 | 0.2500 | 0.7915 |
F1-score | 0.2685 | 0.4160 | 0.1860 | 0.1861 | 0.1872 | 0.7922 |