Table 6 The quantitative indexes on different classifier.

From: Predicting road traffic accident severity from imbalanced data using VAE attention and GCN

Datasets

Methods

Classification indexes

Accuracy

F1-score

Recall

Precision

CHILI

Ours

0.8469

0.8449

0.8469

0.8606

SVM

0.7566

0.7487

0.7565

0.7563

KNN

0.8395

0.8378

0.8395

0.8521

Random Forest

0.8416

0.8416

0.8416

0.8518

AdaBoost

0.6301

0.5561

0.6308

0.5503

CNN

0.8204

0.8180

0.82033

0.8286

NEWYORK

Ours

0.8333

0.8399

0.83338

0.8334

SVM

0.6562

0.6985

0.6563

0.6364

KNN

0.8408

0.8445

0.8409

0.8420

Random Forest

0.8459

0.8483

0.8459

0.8469

AdaBoost

0.7711

0.7666

0.7711

0.7631

CNN

0.8526

0.8624

0.8526

0.8551

BRONX

Ours

0.7915

0.7993

0.7915

0.7922

SVM

0.6710

0.7012

0.6710

0.6432

KNN

0.8023

0.8041

0.8023

0.8027

Random Forest

0.8192

0.8272

0.8192

0.8217

AdaBoost

0.7268

0.7391

0.7268

0.7274

CNN

0.8336

0.8509

0.8336

0.8375

  1. Significant values are in bold.