Table 6 The quantitative indexes on different classifier.
From: Predicting road traffic accident severity from imbalanced data using VAE attention and GCN
Datasets | Methods | Classification indexes | |||
---|---|---|---|---|---|
Accuracy | F1-score | Recall | Precision | ||
CHILI | Ours | 0.8469 | 0.8449 | 0.8469 | 0.8606 |
SVM | 0.7566 | 0.7487 | 0.7565 | 0.7563 | |
KNN | 0.8395 | 0.8378 | 0.8395 | 0.8521 | |
Random Forest | 0.8416 | 0.8416 | 0.8416 | 0.8518 | |
AdaBoost | 0.6301 | 0.5561 | 0.6308 | 0.5503 | |
CNN | 0.8204 | 0.8180 | 0.82033 | 0.8286 | |
NEWYORK | Ours | 0.8333 | 0.8399 | 0.83338 | 0.8334 |
SVM | 0.6562 | 0.6985 | 0.6563 | 0.6364 | |
KNN | 0.8408 | 0.8445 | 0.8409 | 0.8420 | |
Random Forest | 0.8459 | 0.8483 | 0.8459 | 0.8469 | |
AdaBoost | 0.7711 | 0.7666 | 0.7711 | 0.7631 | |
CNN | 0.8526 | 0.8624 | 0.8526 | 0.8551 | |
BRONX | Ours | 0.7915 | 0.7993 | 0.7915 | 0.7922 |
SVM | 0.6710 | 0.7012 | 0.6710 | 0.6432 | |
KNN | 0.8023 | 0.8041 | 0.8023 | 0.8027 | |
Random Forest | 0.8192 | 0.8272 | 0.8192 | 0.8217 | |
AdaBoost | 0.7268 | 0.7391 | 0.7268 | 0.7274 | |
CNN | 0.8336 | 0.8509 | 0.8336 | 0.8375 |