Table 1 Performance and mean training time comparison of DNN models (U-Net and backbone U-Net) using different MRI image weights for glioma semantic segmentation.

From: Enhanced glioma semantic segmentation using U-net and pre-trained backbone U-net architectures

DNN models

MRI image weights

ACC (%)

Mean IoU

Training time for

each epoch

U-Net

T1

97.6

0.724

17 s 7 ms

T2

97.27

0.759

18 s 7 ms

T1Gd

98.15

0.782

18 s 7 ms

T2-FLAIR

97.3

0.754

17 s 7 ms

ResNet-U-Net

T1

98.41

0.802

82 s 29 ms

T2

98.45

0.810

82 s 29 ms

T1Gd

98.62

0.830

82 s 29 ms

T2-FLAIR

98.42

0.795

82 s 29 ms

Inception-U-Net

T1

98.39

0.796

114 s 40 ms

T2

98.41

0.801

115 s 40 ms

T1Gd

98.31

0.810

116 s 41 ms

T2-FLAIR

98.48

0.812

116 s 41 ms

VGG-U-Net

T1

98.26

0.761

89 s 31 ms

T2

98.34

0.777

89 s 31 ms

T1Gd

98.34

0.808

89 s 31 ms

T2-FLAIR

98.39

0.787

90 s 32 ms

  1. The mean ACC and IoU values in test data are presented.