Table 6 Result of Semi-supervised Model.

From: Input driven optimization of echo state network parameters for prediction on chaotic time series

Dataset

Metric

Simple model

DPP approach

IPP approach

A1

NRMSE

3.49 ± 9.1

0.1105 ± 2.1e-02

0.1804 ± 1.2e-02

MSE

11.13 ± 60

0.01116 ± 0.002

0.02976 ± 0.006

A2

NRMSE

5.1 ± 9.8

0.1522 ± 1e-02

0.1603 ± 1.1e-02

MSE

23.78 ± 19

0.02118 ± 0.002

0.0235 ± 0.003

B1

NRMSE

8.37 ± 9.7

0.1489 ± 0.07

0.067 ± 0.15

MSE

64.07 ± 40

0.0202 ± 0.01

0.0041 ± 0.01

B2

NRMSE

0.488 ± 0.0643

0.1780 ± 0.08

0.1259 ± 0.01

MSE

0.2177 ± 0.06

0.0289 ± 0.02

0.0144 ± 0.002

C1

NRMSE

8.37 ± 9.7

0.0012 ± 1e-04

0.0008 ± 1e-03

MSE

64.07 ± 50

(1.32 ± 0.23)e-5

(1.1 ± 2)e-5

C2

NRMSE

0.02 ± 0.03

0.0009 ± 2e-04

0.0006 ± 1e-04

MSE

0.0003 ± 0.001

(2.4 ± 0.2)e-5

(1.1 ± 0.7)e-5

D1

NRMSE

8.37 ± 9.7

0.1422 ± 0.01

0.0712 ± 0.05

MSE

64.07 ± 35

0.01849 ± 0.002

0.004636 ± 0.006

D2

NRMSE

0.2619 ± 0.005

0.1565 ± 0.05

0.0947 ± 0.03

MSE

0.062731 ± 0.002

0.0224 ± 0.01

0.0082 ± 0.005

E1

NRMSE

0.4105 ± 0.01

0.3459 ± 0.02

0.3443 ± 0.01

MSE

0.1541 ± 0.006

0.0613 ± 0.007

0.0607 ± 0.004

E2

NRMSE

0.4221 ± 0.01

0.3435 ± 0.02

0.3411 ± 0.03

MSE

0.1629 ± 0.008

0.0604 ± 0.007

0.05964 ± 0.01

F1

NRMSE

0.4041 ± 0.01

0.3463 ± 0.02

0.2873 ± 0.1

MSE

0.1493 ± 0.007

0.0614 ± 0.007

0.0457 ± 0.05

F2

NRMSE

0.4035 ± 0.04

0.3440 ± 0.02

0.3383 ± 0.03

MSE

0.1489 ± 0.003

0.0606 ± 0.007

0.0581 ± 0.01