Table 7 Comparison of our supervised model against previous echo state network approaches, showing consistent performance improvements over published methods across multiple datasets and time series prediction tasks.

From: Input driven optimization of echo state network parameters for prediction on chaotic time series

Title paper

Data set

Reservoir number

Base ESN NRMSE

Suggested model

All data

Train and valid data

test

Percentage of improvement (+ means get better)

Our Simple

Our model

Percentage of improvement

Chaotic time series prediction using echo state network based on selective opposition grey wolf optimizer

MG

Tua = 17

100

3.69e−4

5.34e−4

5000

4200

800

−44.72%

0.2804

0.1652

+ 41.08%

3.18e−4

+ 13.82%

2.98e−4

+ 19.24%

2.83e−4

+ 23.31%

200

3.66e−4

4.75e−4

−29.78%

0.2236

0.1088

+ 51.34%

2.57e−4

+ 29.78%

1.95e−4

+ 46.72%

1.85e−4

+ 49.45%

500

3.74e−4

4.94e−4

−32.09%

0.1097

0.059

+ 46.22%

2.34e−4

+ 37.43%

1.54e−4

+ 58.82%

1.46e−4

+ 60.96%

Collective behavior of a small-world recurrent neural system with scale-free distribution

Laser times series(18)

500

0.1422

0.1148

2400

2200

200

+ 19.27%

0.28

0.25

+ 10.71%

Laser times series(19)

500

0.0804

0.0558

2700

2500

200

+ 30.60%

0.26

0.23

+ 11.54%

SCESN, SPESN, SWESN: Three recurrent neural echo state networks with clustered reservoirs for prediction of nonlinear and chaotic time series

Laser times series(18)

500

0.1422

0.1141

2400

2200

200

+ 19.76%

0.28

0.25

+ 10.71%

0.1118

+ 21.38%

0.1135

+ 20.18%

Laser times series(19)

500

0.0804

0.0512

2700

2500

200

+ 36.32%

0.26

0.23

+ 11.54%

0.0491

+ 38.93%

0.0531

+ 33.96%

Design of a reservoir for cloud-enabled echo state network with high clustering coefficient

Laser times series(18)

500

0.1422

0.1140

2400

2200

200

+ 19.83%

0.28

0.25

+ 10.71%

0.1138

+ 19.97%

0.1132

+ 20.39%

0.1107

+ 22.15%

Laser times series(19)

500

0.0804

0.0510

2700

2500

200

+ 36.57%

0.26

0.23

+ 11.54%

0.0497

+ 38.18%

0.0501

+ 37.69%

0.0442

+ 45.02%

Parameterizing echo state networks for multi-step time series prediction

MG

Tua = 17

2024

15.710

0.025

2368

2082

286

+ 99.84%

0.32

0.31

+ 3.13%