Table 1 Overview of key literature on ML applications in gas adsorption.

From: Toward accurate prediction of N2 uptake capacity in metal-organic frameworks

References

Material type

Gas

ML technique

R2

Input parameters

Main contribution

35

Graphene oxide (GO)

CO2

Extra trees regressor

Gradient boosting regressor

RF regressor, XGBR regressor, SVR

0.989

0.987

0.981

0.979

0.965

Pressure (bar)

BET surface area (m2/g), Temperature (K), pore volume (cm3/g)

Optimized porous GO structures for efficient CO2 sequestration

36

Metal organic framework (MOF)

CO2

XGBoost

LightGBM

Cat Boost

RF

0.995

0.983

0.965

0.946

Pressure (bar), temperature (K), surface area (m2/g), pore volume (cm3/g)

Intelligent modeling of non-linear CO2 adsorption in MOFs

37

Activated carbon (AC)

CO2

Gradient Boosting

ANN-MLP

Gaussian

K-Near Neighbor

RF

DT

SVR

0.996

0.976

0.946

0.946

0.981

0.982

0.841

BET surface area (m2/gr), mean pore diameter (nm), pore volume (cc/gr), temperature (K), pressure(bar)

Development of high-performance adsorbents for sustainable CO2 capture

38

Shale

CH4

XGBoost

RF

SVR

0.978

0.908

0.841

Pressure, temperature, moisture, TOC

Modeling methane uptake in shales

39

Metal organic framework (MOF)

CH4

RF

0.98

Interpenetration capacity, void fraction, dominant pore diameter, surface area (m2/g), Density (g/cm3), maximum pore diameter,Number of interpenetrations framework

Rapid and precise estimation of methane uptake in MOFs

40

Metal organic framework (MOF)

H2

DT (Fine Tree)

Random Forest

Tri-layered NN

Boosted Trees

Quadratic SVM

Linear SVM

Exponential GPR

Matern 5/2 GPR

Bi-layered NN

Narrow NN

Medium NN

Wide NN

Rational Quadratic Kernel GPR

0.98

0.98

1

0.98

0.98

0.84

0.99

0.99

0.99

0.99

0.99

0.99

0.99

Void fraction, pore limiting

Crystal density (g/cm3),

Pore volume (cm3/g), diameter(Å), largest cavity diameter(Å)

Prediction of gravimetric and volumetric H₂ adsorption in real

MOFs with validation against simulated and experimental data

41

Porous carbon material (PCM)

H2

GRNN

ELM

LSSVM

ANFIS

0.970

0.939

0.991

0.968

Temperature(T), Pressure (MPa), surface area (m2/g)

Measured weight percentages (wt %) of oxygen (O), hydrogen (H), carbon (C), and nitrogen (N),

Total pore volume

(cm3/g);

Forecasting hydrogen retention ability in PCMs via ML techniques

34

Metal organic framework (MOF)

H2

CNN

DNN

GPR

0.998

0.997

0.999

Pressure (bar)

BET surface area (m2/g), total pore volume (cm3/g temperature (K),

The combined impact of input variables on predicting hydrogen storage capacity in MOFs

42

Metal organic framework (MOF)

H2

Ada Boost

Bagging with DT

Bagging with RF

Boosted DT

DT

ET

Gradient Boosting

K-Nearest Neighbors

Linear Regression

Nu-SVM with (RBF) Kernel

RF

Ridge Regression

SVM- (RBF) Kernel

SVM with Linear Kernel

0.911

0.963

0.964

0.965

0.936

0.967

0.955

0.926

0.913

0.913

0.963

0.913

0.913

0.907

Largest cavity diameter (Å), void fraction, density(g/cm3),

Gravimetric surface area (m2 /g), pore volume (cm3/g), pore limiting diameter (Å), Volumetric surface area (m2 /cm3),

Applying ML models to expedite the search for MOFs with optimized volumetric characteristics

43

Metal organic framework (MOF)

CH4

SVM

RF

GBRT

0.968

0.980

0.983

Gravimetric surface area (m2 /g), volumetric surface area (m2 /cm3), Largest cavity diameter(Å), Henry coefficient (mol kg− 1 MPa− 1), density (g /cm3), void fraction

ML-enabled acceleration of high-efficiency MOF discovery for CH4 storage applications.

44

Metal organic framework (MOF)

H2

SVM

RF

XGBoost

LightGBM

CatBoost

ANN- 5

CMIS-Before Leverage

CMIS-After Leverage

0.912

0.931

0.939

0.936

0.958

0.935

0.935

0.982

BET surface area (m2/g), pressure (bar), temperature (K), total pore volume (cm3/g)

Modeling framework for MOF selection and process optimization in H2 storage systems

45

Metal organic framework (MOF)

CO2

LSSVM, MLP, LSSVM-Growth optimization), MLP-Growth optimization, LSSVM- PSO, MLP-PSO

0.923

0.900

0.992

0.961

0.955

0.939

Temperature (K), Total pore volume (cm3/g), pressure (bar)

Langmuir-specific surface area(m2/g)

Cost-effective ML prediction framework for adsorption capacity in MOF design

31

Metal organic framework (MOF)

CO2

PSO-ANFIS, DE-ANFIS, RBF ANN, LSSVM

0.957

0.934

0.999

0.998

Temperature (K), total pore volume (cm3/g), pressure (bar), surface area(m2/g),

Finding a suitable method for estimating CO2 uptake in MOFs