Table 3 Prediction error indicators for ML models.
Error indicator | Data sets | Model | |||
---|---|---|---|---|---|
RF | XGBoost | LightGBM | AutoML | ||
R2 | Training set | 0.8577 | 0.9526 | 0.9406 | 0.9451 |
Testing set | 0.7971 | 0.9096 | 0.8731 | 0.8791 | |
Validation set | 0.8497 | 0.9270 | 0.9260 | 0.9280 | |
RMSE (MPa) | Training set | 6.3193 | 3.6481 | 4.0839 | 3.9242 |
Testing set | 7.6902 | 5.1338 | 6.0828 | 5.9378 | |
Validation set | 7.6494 | 5.3307 | 5.3671 | 5.2954 | |
MAE (MPa) | Training set | 4.8270 | 2.1522 | 2.5486 | 2.3796 |
Testing set | 5.9949 | 3.3976 | 4.2228 | 4.0224 | |
Validation set | 6.1662 | 4.0911 | 4.2245 | 4.2307 | |
MAPE | Training set | 0.0915 | 0.0385 | 0.0504 | 0.0457 |
Testing set | 0.1277 | 0.0741 | 0.0874 | 0.0858 | |
Validation set | 0.1098 | 0.0743 | 0.0763 | 0.0724 | |
a20 | Training set | 0.9223 | 0.9355 | 0.9369 | 0.9660 |
Testing set | 0.8103 | 0.9138 | 0.8793 | 0.8966 | |
Validation set | 0.8065 | 0.9355 | 0.9032 | 0.9677 |