Table 2 Optimized hyperparameter settings of various regression models, including Random Forest (RF), K-Nearest Neighbors (KNN), AdaBoost, Gradient Boosting Regression (GBR), Support Vector Regression (SVR), Decision Tree (DT), and Extreme Gradient Boosting(XGBoost), aimed at enhancing model performance.

From: Estimation of woody vegetation biomass in Australia based on multi-source remote sensing data and stacking models

Model

Hyperparameter

Value

Model

Hyperparameter

Value

RF

n_estimators

424

SVR

kernel

RBF

 

max_depth

15

 

C

20

KNN

n_neighbors

5

 

epsilon

0.2

AdaBoost

n_neighbors

440

DT

max_depth

5

GBR

n_estimators

224

XGBoost

max_depth

5

 

learning_rate

0.1

 

learning_rate

0.06

 

max_depth

5

 

n_estimators

424