Table 4 Validate the contribution of each of the modules we proposed on the VisDrone2019 dataset. YOLO11n-A is to add a small object detection layer to the original YOLO11. YOLO11n-B is the addition of a small target detection layer and the C3kHR module. Similarly, YOLO11n-C and YOLO11n-D represent models that add the corresponding module, respectively. The best results are highlighted in bold.

From: Enhanced feature representation for real time UAV image object detection using contextual information and adaptive fusion

Method

SMDL

C3kHR

EAFN

ADown

P

R

mAP

FPS

Parameters

YOLO11n

\(\times\)

\(\times\)

\(\times\)

\(\times\)

45.9

33.2

33.6

267

2.59M

YOLO11n-A

\(\checkmark\)

\(\times\)

\(\times\)

\(\times\)

46.9

35.7

36.0

262

2.67M

YOLO11n-B

\(\checkmark\)

\(\checkmark\)

\(\times\)

\(\times\)

49.6

36.0

37.9

228

2.98M

YOLO11n-C

\(\checkmark\)

\(\times\)

\(\checkmark\)

\(\times\)

51.1

36.4

38.0

230

3.06M

YOLO11n-D

\(\checkmark\)

\(\checkmark\)

\(\checkmark\)

\(\times\)

50.9

38.7

40.1

210

3.90M

YOLO-UD-n

\(\checkmark\)

\(\checkmark\)

\(\checkmark\)

\(\checkmark\)

50.3

38.1

39.5

242

3.31M