Table 2 Sample of the studies related to \(PM_{2.5}\) forecasting.

From: A hybrid Harris Hawks Optimization with Support Vector Regression for air quality forecasting

Study

Publishing year

Dataset

Period

Goal

Evaluation metric

Method

43

2019

the Greater London Area Pollution Data

2016:2017

\(O_3\), \(PM_{10}\)

MAE, RMSE, AI, \(R^2\)

CEeSNN

44

2019

Collected by auther

16 mos

\(PM_{2.5}\)

MAE, \(R^2\)

Kernel based linear regression, Bayesian based

45

2020

Beijing, Wuhan, Shanghai, Guangzhou, Chengdu

2014

\(PM_{2.5}\)

\(R^ 2\)

MLR, GWR, RF, GRNN

46

2020

China

2014

\(PM_{2.5}\)

\(R^2\), RMSE, MPE, RPE

GTWNN

47

2020

Jinan, Nanjing, Chongqing

2017:2018

\(PM_{2.5}\),\(PM_{10}\), \(SO_2\),AQI

MAE, RMSE, MAPE, IA, U1,U2, R

ICEEMDAN-MOHHO-ELM

48

2020

Central Pollution Control in India

 

\(PM_{2.5}\)

\(R^2\), MAE, MAPE, RMSE

WANFIS-PSO

49

2020

CPCB

2016:2018

\(PM_{2.5}\)

MSE, Pearson Correlation

ANN, SVM

50

2020

Beijing, Guangzhou, Shanghai

2016

\(PM_{2.5}\), \(PM_{10}\)

MAE, RMSE, MAPE, TIC, VAR,IA, DA

FCFS

51

2020

Beijing

2010:2014

\(PM_{2.5}\)

RMSE

AE-BiLSTM

52

2020

TAQMN

2012: 2017

\(PM_{2.5}\)

RMSE, MSE, MAE, \(R^2\)

Gradient Booting Regression

53

2021

China (14 cities)

2014:2018

\(PM_{2.5}\)

RMSE, MAE

FDN-Learning

54

2021

Beijing

2015:2017

\(PM_{2.5}\)

MAPE, MAE, RMSE

CEEMDAN-DeepTCN

39

2021

Beijing, Shanghai, Wuhan, Guangzhou

2019

\(PM_{2.5}\)

MAE, MAPE, RMSE

GB-ELM-MIMO-ECM,

MAdaBoost-ELM-MIMO-ECM,

GB-ELM-Recursive-ECM,

MAdaBoost-ELM-Recursive-ECM

55

2021

BJ2014

2014:2015

\(PM_{2.5}\)

MAE, RMSE, SMAPE

SpAttRNN

BJ2017

2017:2018

Meteorological , POI

56

2021

Beijing

2014:2015

\(PM_{2.5}\)

RMSE, MAE, \(R^2\)

ST-CausalConvNet

41

2022

Bei-Shang-Guang-Shen

2020

\(PM_{2.5}\)

MAPE, MAE, RMSE, DA

mRMR, BPNN, ELM, GRNN, BiLSTM, MOWCA

57

2022

Collected by auther

 

\(PM_{2.5}\), CO,

\(SO_2\), \(O_3\), \(H_{2}S\),

\(NO_2\),\(PM_{10}\)

MSE

LSTM

58

2022

Beijing, Tianjin, Shanghai, Chongqing

2018:2019

\(PM_{2.5}\), \(PM_{10}\)

MAPE, MAE, RMSE, NRMSE, \(R^2\)

RLMD-ARIMA- RVMcom-MW

59

2022

Japanese ministry of environment.

2014

\(PM_{2.5}\), \(NO_2\)

RMSE, ME, MAE, \(R^2\)

LightGBM, RF,XGBoost

60

2022

China’s National Ambient Air Quality Monitoring Network

2015:2020

\(PM_{2.5}\)

\(R^2\), MAE, MAPE, RMSE

RF

61

2022

CNEMC

2013:2020

\(PM_{2.5}\)

RMSE, \(R^2\), MAE, PRE

STENN

62

2022

Utrecht, NL

2020

\(PM_{2.5}\)

RMSE, MAE, IA, R, Accuracy, NMB, NMSD

AVGAE, GRF

Antwerp, BE

2021

\(NO_2\)

Oakland, US

2019

\(NO_2\)

40

2023

Beijing \(PM_{2.5}\)

2010:2014

\(PM_{2.5}\)

RMSE, MAE

CRINet

Beijing Shunyi-Station

2013:2017

\(SO_2\), \(NO_2\), \(PM_{2.5}\), \(PM_{10}\), \(O_3\)

63

2023

Lanzhou

2020:2022

\(PM_{2.5}\)

MAPE, RMSE, MAE, SMAPe, Dstat

VMD-ARIMA-CNN-TCN

64

2023

India

2015:2020

\(PM_{2.5}\), \(PM_{10}\), \(NO_2\), \(SO_2\), \(O_3\)

MAPE, \(R^2\)

SVR, XGBOOST

65

2023

University of California Irvine (UCI) Beijing, China

2010:2014

\(PM_{2.5}\)

RMSE, \(R^2\), MAE, PRE

RBOSR

42

2023

Xi’an

2018:2020

\(PM_{2.5}\)

RSE, CORR, RMSE, MAE

STF-Net

Beijing

2013:2017