Table 12 The performance of neural network-based forecasting models with data clustering and dimensionality reduction.

From: Learning model combined with data clustering and dimensionality reduction for short-term electricity load forecasting

Model

Clustering (k-means)

Dimensionality reduction

Nclusters

Summer

Winter

MAPE

RMSE

MAPE

RMSE

ANN

X

3.55 ± 1.88

219.75 ± 87.64

4.24 ± 0.15

454.39 ± 15.52

O

k-PCA

2

2.77 ± 0.15

185.32 ± 9.6

4.2 ± 0.13

435.35 ± 24.23

3

2.72 ± 0.52

179.89 ± 31.04

4.21 ± 0.21

429.56 ± 13.27

4

2.63 ± 0.12

175.03 ± 5.8

4.0 ± 0.18

404.81 ± 16.09

t-SNE

2

2.66 ± 0.06

183.07 ± 5.03

4.15 ± 0.16

431.98 ± 20.26

3

2.75 ± 0.11

185.27 ± 6.11

4.32 ± 0.17

459.1 ± 17.94

4

2.66 ± 0.27

176.49 ± 12.49

4.36 ± 0.17

504.22 ± 27.01

UMAP

2

2.68 ± 0.09

183.49 ± 5.83

4.32 ± 0.2

450.24 ± 11.8

3

2.83 ± 0.14

191.73 ± 5.3

4.24 ± 0.11

472.6 ± 21.56

4

2.71 ± 0.44

179.99 ± 21.49

4.33 ± 0.14

496.4 ± 23.36

CNN

X

2.66 ± 0.1

177.37 ± 6.25

4.02 ± 0.13

405.79 ± 8.42

O

k-PCA

2

2.64 ± 0.14

179.78 ± 7.69

3.93 ± 0.11

400.67 ± 6.03

3

2.43 ± 0.09

170.9 ± 4.61

3.82 ± 0.14

387.39 ± 8.0

4

2.48 ± 0.07

178.26 ± 2.55

3.94 ± 0.18

391.66 ± 8.79

t-SNE

2

2.52 ± 0.09

174.37 ± 5.22

3.88 ± 0.11

399.15 ± 7.6

3

2.42 ± 0.08

173.75 ± 2.94

4.1 ± 0.16

412.4 ± 12.98

4

2.54 ± 0.04

183.02 ± 2.53

4.42 ± 0.21

429.68 ± 16.45

UMAP

2

2.49 ± 0.06

172.87 ± 4.36

3.94 ± 0.17

401.91 ± 10.7

3

2.47 ± 0.08

175.69 ± 3.59

4.17 ± 0.15

417.4 ± 17.46

4

2.47 ± 0.06

178.47 ± 5.1

4.51 ± 0.18

437.37 ± 15.1

LSTM

X

2.03 ± 0.06

138.59 ± 3.75

3.28 ± 0.14

339.77 ± 30.86

O

k-PCA

2

2.01 ± 0.06

140.95 ± 3.14

3.36 ± 0.13

371.45 ± 34.15

3

2.06 ± 0.06

148.0 ± 3.41

3.44 ± 0.16

401.61 ± 46.89

4

2.01 ± 0.07

141.16 ± 4.17

3.19 ± 0.08

319.26 ± 12.89

t-SNE

2

2.02 ± 0.04

143.99 ± 2.38

3.32 ± 0.17

369.18 ± 33.69

3

2.04 ± 0.04

149.89 ± 3.37

3.41 ± 0.15

378.65 ± 37.77

4

2.09 ± 0.13

153.65 ± 7.48

3.46 ± 0.08

373.63 ± 25.59

UMAP

2

2.03 ± 0.05

143.02 ± 2.63

3.37 ± 0.17

367.43 ± 41.12

3

2.06 ± 0.04

153.78 ± 4.45

3.37 ± 0.08

368.08 ± 14.77

4

2.13 ± 0.08

159.93 ± 6.95

3.26 ± 0.07

338.28 ± 17.06