Table 6 Performance results for the sensitivity, specificity, accuracy, and F1 score of the features selected according to the five feature selection methods.

From: Combining meta and ensemble learning to classify EEG for seizure detection

Type

Feature

Sen(%)

Spe(%)

F1(%)

Acc(%)

mixture

θ-13,δ-29,θ-29,θ-21, α-13,δ-21

90.38

91.74

72.78

91.57

Semi-JMI

θ-13,γ-14,δ-29, θ-29,θ-21,δ-28

92.58

92.51

75.54

92.52

JMI

θ-13,γ-14, θ-29,δ-29,θ-21,δ-28

91.95

92.95

76.19

92.83

Semi-MIM

θ-13,θ-29,α-13,δ-29,θ-21,α-29

90.27

90.84

70.92

90.77

MIM

θ-13,θ-29,α-13,δ-29,θ-21,δ-21

90.74

91.72

72.93

91.60