Table 2 EIASC algorithm.
Step 1 | Initialization | Initialization |
\(a = \sum _n = 1^Ny^n\underline{f}^n\) | \(a = \sum _n = 1^Ny^n\underline{f}^n\) | |
\(b = \sum _n = 1^N\underline{f}^n\) | \(b = \sum _n = 1^N\underline{f}^n\) | |
L = 0 | R = N | |
Step 2 | Compute | Compute |
\(L = L + 1\) | \(a = a + y^R\left( \overline{f}^R - \underline{f}^R \right)\) | |
\(a = a + y^L\left( \overline{f}^L - \underline{f}^L \right)\) | \(b = b + \overline{f}^R - \,{\underline{f}}^R\) | |
\(b = b + \overline{f}^L - \underline{f}^L\) | \(y_r = \frac{a}{b}\) | |
\(y_l = \frac{a}{b}\)) | \(R\ = \ R\ - \ 1\) | |
Step 3 | If \(y_l \le y^L + 1\), stop; | If \(y_r \ge y^R\), stop; |
Otherwise, return to Step 2. | Otherwise, return to Step 2. |