Table 5 Stability of equilibrium points.

From: Research on the evolutionary game of reversed online public opinion based on the dual-helix structure mechanism

Equilibrium point

Conditions

det(J) symbol

tr(J) symbol

Outcome

A (0, 1)

\(\:\text{N}\text{e}\text{v}\text{e}\text{r}\:\text{m}\text{e}\text{t}\:\text{s}\text{i}\text{m}\text{u}\text{l}\text{t}\text{a}\text{n}\text{e}\text{o}\text{u}\text{s}\text{l}\text{y}:\:det\left(J\right)>0,\:tr\left(J\right)<0\)

?

?

Unstable

B (0, 0)

\(\:{L}_{1}-{C}_{1}+{R}_{1}-{R}_{2}+{R}_{3}<0\)\(\:{C}_{3}-\:{C}_{2}+{C}_{4}+{R}_{5}-{R}_{6}<0\)

+

-

ESS

C (1, 0)

\(\:{L}_{1}-{C}_{1}+{R}_{1}-{R}_{2}+{R}_{3}>0\)\(\:{C}_{2}-\:{C}_{3}-{C}_{4}+{L}_{2}-{R}_{4}+{R}_{6}>0\)

+

-

ESS

D (1, 1)

\(\:\text{N}\text{e}\text{v}\text{e}\text{r}\:\text{m}\text{e}\text{t}\:\text{s}\text{i}\text{m}\text{u}\text{l}\text{t}\text{a}\text{n}\text{e}\text{o}\text{u}\text{s}\text{l}\text{y}:\:det\left(J\right)>0,\:tr\left(J\right)<0\)

?

?

Unstable

E (x*, y*)

Always a saddle point

?

0

Saddle point