Table 6 Basic Group field assumptions of various cryptographic operations.
Method | Curve | Pairing | Cyclic Group | |P| | [G} | Group field range |
---|---|---|---|---|---|---|
Bilinear-pairing | \(\overline{E}\): \(y^{2}\) = \(x^{3}\) + x mod \(\hat{p}\) | \(\hat{e}\): \(G_{1}\) x \(G_{2}\) → \(G_{T}\) | \(G_{1}\)(P) | 64 Bytes | q = 20 bytes | |\(G_{1} | = 128\) bytes |
Elliptic curve | \(\overline{E}\): \(y^{2} = x^{3} +\) ax + b mod p | No | G(P) | 20 Bytes | q = 20 bytes | |G|= 40 Bytes |
Chebyshev polynomial | \(T_{n} \left( x \right) \equiv \left( {2xT_{n - 1} \left( x \right) - T_{n - 2} \left( x \right)} \right)\left( {mod P} \right);\) \(n{ \succcurlyeq }2\) | No | \(Z_{p}^{*}\) | – | – | \(\left| {Z_{p}^{*} } \right| = 20\) Bytes |
Dickson polynomial | \(D_{n} \left( {x,\alpha } \right) = x D_{n - 1} \left( {x,\alpha } \right) - \alpha D_{n - 2} \left( {x,\alpha } \right);\) \(n{ \succcurlyeq }2\) | No | \(Z_{p}^{*}\) | – | – | \(\left| {Z_{p}^{*} } \right| = 20\) Bytes |