Table 1 Existing literature about ML models utilization in concrete properties prediction.

From: Advanced and hybrid machine learning techniques for predicting compressive strength in palm oil fuel ash-modified concrete with SHAP analysis

Ref

Type of Concrete

Models applied

No. of Inputs

Dataset

Performance Metrics

Best Model

R2

RMSE

MAE

 

80

Fly ash Based concrete

ANN

PSO

ANN—ICA

  

0.838

0.877

-

-

ANN-PSO

74

Waste steel slag

ANN

MLR

M5P

FQ

6

338

0.986

0.868

0.912

0.869

1.34

4.14

3.39

4.10

1.05

3.21

2.45

3.18

ANN

77

Waste Tire Rubber

NLR

MEP

ANN

MARS

8

135

0.944

0.951

0.979

0.982

6.2

5.7

3.7

3.5

 

MARS

76

HSC

GEP

10

32

Error < 14%

78

SCC

M5P

FQ

MLR

LR

9

436

0.91

0.87

0.42

0.67

4.22

5.22

12.42

7.95

 

M5P

79

UHPFRC

LR

ANN

M5P

FQ

10

192

0.81

0.93

0.88

0.86

8.72

4.97

6.84

8.50

 

ANN

68

Rubberized concrete

GEP

ANN

Bagging

4

324

0.982

0.984

0.968

0.918

0.867

1.211

0.730

0.621

0.928

ANN

61

POFA concrete

ANN

ANNX

PSO

GA

6

249

0.989

0.977

0.934

0.923

0.033

0.049

0.082

0.087

0.023

0.023

0.057

0.066

ANN and ANNX

81

UHPC

Hybrid

XGB

LGB

13

317

0.963

0.946

0.943

1.98

4.29

5.59

1.00

3.16

4.07

Hybrid