Table 2 List of classes and input parameters used for implementing the model.
Classifier | Classes and input parameters | Weights (%) |
---|---|---|
LR | C = 0.2, max_iter = 300, penalty = ‘l2’, solver = ‘liblinear’ | 18.2 |
XGBoost | gamma = 0.003, learning_rate = 0.1, max_depth = 1, min_child_weight = 0.01, n_estimators = 50, reg_lambda = 0.001, reg_alpha = 0.1, subsample = 0.8 | 27.3 |
SVM | C = 0.2, gamma = 0.1, kernel = ‘linear’ | 36.4 |
CatBoost | depth = 4, iterations = 60, learning_rate = 0.001, l2_leaf_reg = 1 | 9.1 |
MLP | alpha = 0.15, hidden_layer_sizes = (10,10), solver = ‘adam’, activation = ‘relu’, learning_rate = 0.01 | 9.1 |