Table 3 Cost balance equations.
Component | Exergetic cost rate balance equation | Auxiliary equation |
---|---|---|
AC | \(\:{\dot{C}}_{22}+{\dot{C}}_{W,AC}+{\dot{Z}}_{AC}={\dot{C}}_{23}\) | \(\:{c}_{w,AC}=\:{c}_{w,GT}\) |
CC | \(\:{\dot{C}}_{24}+{\dot{C}}_{23}+{\dot{Z}}_{CC}={\dot{C}}_{25}\) | \(\:\frac{{\dot{C}}_{23}}{{\dot{E}}_{23}}=\:\frac{{\dot{C}}_{25}}{{\dot{E}}_{25}}\) |
GT | \(\:{\dot{C}}_{25}+{\dot{Z}}_{W,GT}={\dot{C}}_{26}+{\dot{C}}_{GT}\) | \(\:\frac{{\dot{C}}_{25}}{{\dot{E}}_{25}}=\:\frac{{\dot{C}}_{26}}{{\dot{E}}_{26}}\) |
HRSG | \(\:{\dot{C}}_{26}+{\dot{C}}_{19}+{\dot{C}}_{14}+{\dot{Z}}_{HRSG}={\dot{C}}_{27}+{\dot{C}}_{20}+{\dot{C}}_{1}\) | \(\:\frac{{\dot{C}}_{26}}{{\dot{E}}_{26}}=\:\frac{{\dot{C}}_{27}}{{\dot{E}}_{27}}\) |
HPST | \(\:{\dot{C}}_{1}+{\dot{Z}}_{W,HPST}={\dot{C}}_{2}+{\dot{C}}_{W,HPST}\) | \(\:\frac{{\dot{C}}_{1}}{{\dot{E}}_{1}}=\:\frac{{\dot{C}}_{2}}{{\dot{E}}_{2}}\) |
IPST | \(\:{\dot{C}}_{3}+{\dot{Z}}_{W,IPST}={\dot{C}}_{5}+{\dot{C}}_{W,IPST}\) | \(\:\frac{{\dot{C}}_{3}}{{\dot{E}}_{3}}=\:\frac{{\dot{C}}_{5}}{{\dot{E}}_{5}\:}\) |
LPST | \(\:{\dot{C}}_{6}+{\dot{Z}}_{W,LPST}={\dot{C}}_{8}+{\dot{C}}_{W,LPST}\) | \(\:\frac{{\dot{C}}_{6}}{{\dot{E}}_{6}}=\:\frac{{\dot{C}}_{8}}{{\dot{E}}_{8}}\) |
Cond1 | \(\:{\dot{C}}_{8}+{\dot{C}}_{15}+{\dot{Z}}_{{cond}_{1}}={\dot{C}}_{9}+{\dot{C}}_{14}\) | \(\:\frac{{\dot{C}}_{8}}{{\dot{E}}_{8}}=\:\frac{{\dot{C}}_{9}}{{\dot{E}}_{9}}\) |
Cond2 | \(\:{\dot{C}}_{31}+{\dot{C}}_{35}+{\dot{Z}}_{{cond}_{2}}={\dot{C}}_{32}+{\dot{C}}_{36}\) | \(\:\frac{{\dot{C}}_{31}}{{\dot{E}}_{31}}=\:\frac{{\dot{C}}_{32}}{{\dot{E}}_{32}}\) |
P4 | \(\:{\dot{C}}_{20}+{\dot{C}}_{W,{P}_{4}}+{\dot{Z}}_{{P}_{4}}={\dot{C}}_{21}\) | \(\:{c}_{w,{P}_{4}}=\:{c}_{w,HPST}\) |
P1 | \(\:{\dot{C}}_{9}+{\dot{C}}_{W,{P}_{1}}+{\dot{Z}}_{{P}_{1}}={\dot{C}}_{10}\) | \(\:{c}_{w,{P}_{1}}=\:{c}_{w,HPST}\) |
P2 | \(\:{\dot{C}}_{11}+{\dot{C}}_{W,{P}_{2}}+{\dot{Z}}_{{P}_{2}}={\dot{C}}_{12}\) | \(\:{c}_{w,{P}_{2}}=\:{c}_{w,HPST}\) |
P3 | \(\:{\dot{C}}_{13}+{\dot{C}}_{W,{P}_{3}}+{\dot{Z}}_{{P}_{3}}={\dot{C}}_{14}\) | \(\:{c}_{w,{P}_{3}}=\:{c}_{w,LHST}\) |
OFWH1 | \(\:{\dot{C}}_{10}+{\dot{C}}_{7}+{\dot{Z}}_{{OFWH}_{1}}={\dot{C}}_{11}\) | |
OFWH2 | \(\:{\dot{C}}_{12}+{\dot{C}}_{4}+{\dot{Z}}_{{OFWH}_{2}}={\dot{C}}_{13}\) | |
ORT | \(\:{\dot{C}}_{29}+{\dot{Z}}_{W,ORT}={\dot{C}}_{30}+{\dot{C}}_{ORT}\) | \(\:\frac{{\dot{C}}_{29}}{{\dot{E}}_{29}}=\:\frac{{\dot{C}}_{30}}{{\dot{E}}_{30}}\) |
HE | \(\:{\dot{C}}_{30}+{\dot{C}}_{34}+{\dot{Z}}_{HE}={\dot{C}}_{31}+{\dot{C}}_{33}\) | \(\:\frac{{\dot{C}}_{30}}{{\dot{E}}_{30}}=\:\frac{{\dot{C}}_{31}}{{\dot{E}}_{31}}\) |
P4 | \(\:{\dot{C}}_{32}+{\dot{C}}_{W,{P}_{4}}+{\dot{Z}}_{P4}={\dot{C}}_{33}\) | \(\:{c}_{w,{P}_{4}}=\:{c}_{w,ORT}\) |
Evap1 | \(\:{\dot{C}}_{27}+{\dot{C}}_{34}+{\dot{Z}}_{HRorg}={\dot{C}}_{28}+{\dot{C}}_{29}\) | \(\:\frac{{\dot{C}}_{34}}{{\dot{E}}_{34}}=\:\frac{{\dot{C}}_{29}}{{\dot{E}}_{29}}\) |
PTC | \(\:{\dot{C}}_{18}+{\dot{C}}_{q,solar}+{\dot{Z}}_{PTC}={\dot{C}}_{17}\) | \(\:{\dot{C}}_{q,solar}=0\) |
TES | \(\:{\dot{C}}_{17}+{\dot{C}}_{21}+{\dot{Z}}_{TES}={\dot{C}}_{19}+{\dot{C}}_{18}\) | \(\:\frac{{\dot{C}}_{17}}{{\dot{E}}_{17}}=\:\frac{{\dot{C}}_{19}}{{\dot{E}}_{19}}\) |
Gen | \(\:{\dot{C}}_{28}+{\dot{C}}_{3*}++{\dot{Z}}_{GEN}={\dot{C}}_{37}+{\dot{C}}_{7*}+{\dot{C}}_{4*}\) | \(\:\frac{{\dot{C}}_{4*}-{\dot{C}}_{3*}}{{\dot{E}}_{4*}-{\dot{E}}_{3*}}=\:\frac{{\dot{C}}_{7*}-{\dot{C}}_{3*}}{{\dot{E}}_{7*}-{\dot{E}}_{3*}}\) |
P5 | \(\:{\dot{C}}_{1*}+{\dot{C}}_{W,{P}_{5}}+{\dot{Z}}_{{P}_{5}}={\dot{C}}_{2*}\) | \(\:{c}_{w,{P}_{5}}=\:{c}_{w,ORT}\) |
SHE | \(\:{\dot{C}}_{2*}+{\dot{C}}_{4*}+{\dot{Z}}_{SHE}={\dot{C}}_{3*}+{\dot{C}}_{5*}\) | \(\:\frac{{\dot{C}}_{4*}}{{\dot{E}}_{4*}}=\:\frac{{\dot{C}}_{5*}}{{\dot{E}}_{5*}}\) |
Ev1 | \(\:{\dot{C}}_{5*}+{\dot{Z}}_{EXV1}={\dot{C}}_{6*}\) | |
Abs | \(\:{\dot{C}}_{6*}+{\dot{C}}_{13}+{\dot{C}}_{10}+{\dot{Z}}_{Abs}={\dot{C}}_{1*}+{\dot{C}}_{12*}\) | \(\:\frac{{\dot{C}}_{6*}+{\dot{C}}_{10*}}{{\dot{E}}_{6*}+{\dot{E}}_{10*}}=\:\frac{{\dot{C}}_{1*}}{{\dot{E}}_{1*}}\:,\:\:{c}_{13*}=0\) |
Evap2 | \(\:{\dot{C}}_{9*}+{\dot{C}}_{11*}+{\dot{Z}}_{{Evap}_{2}}={\dot{C}}_{22*}+{\dot{C}}_{10*\:}\) | \(\:\frac{{\dot{C}}_{9*}}{{\dot{E}}_{9*}}=\:\frac{{\dot{C}}_{10*}}{{\dot{E}}_{10*}}\)\(\:{c}_{11*}=0\) |
Ev2 | \(\:{\dot{C}}_{8*}+{\dot{Z}}_{{Ev}_{2}}={\dot{C}}_{9*}\) | |
Cond3 | \(\:{\dot{C}}_{7*}+{\dot{C}}_{15*}+{\dot{Z}}_{{cond}_{2}}={\dot{C}}_{8*}+{\dot{C}}_{14*}\) | \(\:\frac{{\dot{C}}_{7*}}{{\dot{E}}_{7*}}=\:\frac{{\dot{C}}_{8*}}{{\dot{E}}_{8*}}\) \(\:{c}_{15*}=0\) |