Table 4 Conditions for evolutionary stable strategies (ESSs) at various equilibrium points.

From: Stability analysis of carbon emission trading mechanism in China based on a tripartite evolutionary game

Equilibrium points

Eigenvalues

Conditions of ESSs

E1(0,0,0)

λ1 = -α·g

λ2 = Cr-Ir + 2Pc·Q3

λ3 = Cw-Cg + K-Rg + T·Pc·Q1+θ·Rg

Cr-Ir + 2Pc·Q3 < 0

Cw-Cg + K-Rg + T·Pc·Q1+θ·Rg < 0

E2(1,0,0)

λ1 = -α·g

λ2 = Cg-Cw-K + Rg-T·Pc·Q1-θ·Rg

λ3 = Cr-Ir + K + S + U + 2Pc·Q3 + T·Pc·Q1-T·Pc·Q2

Cg-Cw-K + Rg-T·Pc·Q1-θ·Rg < 0

Cr-Ir + K + S + U + 2Pc·Q3 + T·Pc·Q1-T·Pc·Q2 < 0

E3(0,1,0)

λ1 = -Cr + Ir-2Pc·Q3

λ2 = L1-L2-Rc + Rw-α·g

λ3 = Cw-Cg-Rg-S + T·Pc·Q2 + θ·Rg

-Cr + Ir-2Pc·Q3 < 0

L1-L2-Rc + Rw-α·g < 0

Cw-Cg-Rg-S + T·Pc·Q2 + θ·Rg < 0

E4(1,1,0)

λ1 = -Cw + Cg + Rg + S-T·Pc·Q2-θ·Rg

λ2 = -Cr + Ir-K-S-U-2Pc·Q3-T·Pc·Q1 + T·Pc·Q2

λ3 = (1-α)(L1-L2-Rc + Rw)-α·g

-Cw + Cg + Rg + S-T·Pc·Q2-θ·Rg < 0

-Cr + Ir-K-S-U-2Pc·Q3-T·Pc·Q1 + T·Pc·Q2 < 0

(1-α)(L1-L2-Rc + Rw)-α·g < 0

E5(1,0,1)

λ1 = -α·g

λ2 = Cg-Cw-K-M + Rg-T·Pc·Q1-θ·Rg

λ3 = Cr-Ir + K + Rc-Rw + S + U + 2Pc·Q3 + T·Pc·Q1-T·Pc·Q2

Cg-Cw-K-M + Rg-T·Pc·Q1-θ·Rg < 0

Cr-Ir + K + Rc-Rw + S + U + 2Pc·Q3 + T·Pc·Q1-T·Pc·Q2 < 0

E6(0,1,1)

λ1 = L2-L1 + Rc-Rw-α·g

λ2 = Ir-Cr-Rc + Rw-U-2Pc·Q3

λ3 = Cw-Cg + M-Rg-S + T·Pc·Q2 + θ·Rg

L2-L1 + Rc-Rw-α·g < 0

Ir-Cr-Rc + Rw-U-2Pc·Q3 < 0

Cw-Cg + M-Rg-S + T·Pc·Q2 + θ·Rg < 0

E7(0,0,1)

λ1 = -α·g

λ2 = Cr-Ir + Rc-Rw + U + 2Pc·Q3

λ3 = Cw-Cg + K + M-Rg + T·Pc·Q1 + θ·Rg

Cr-Ir + Rc-Rw + U + 2Pc·Q3 < 0

Cw-Cg + K + M-Rg + T·Pc·Q1 + θ·Rg < 0

E8(1,1,1)

λ1 = -Cw + Cg-M + Rg + S-T·Pc·Q2-θ·Rg

λ2 = (1-α)(L2-L1 + Rc-Rw)-α·g

λ3 = Ir-Cr-K-Rc + Rw-S-U-2Pc·Q3-T·Pc·Q1 + T·Pc·Q2

-Cw + Cg-M + Rg + S-T·Pc·Q2-θ·Rg < 0

(1-α)(L2-L1 + Rc-Rw)-α·g < 0

Ir-Cr-K-Rc + Rw-S-U-2Pc·Q3-T·Pc·Q1 + T·Pc·Q2 < 0

E9(x*,y*,z*)

Saddle point