Table 2 The prediction performance of each model in validation sets.
Model | AUC | Accuracy | Kappa | Sensitivity | Specificity | PPV | NPV | Precision | Recall |
---|---|---|---|---|---|---|---|---|---|
Logistic | 0.879 | 0.831 | 0.425 | 0.836 | 0.790 | 0.969 | 0.379 | 0.969 | 0.836 |
DT | 0.830 | 0.829 | 0.405 | 0.839 | 0.746 | 0.963 | 0.370 | 0.963 | 0.839 |
RF | 0.905 | 0.856 | 0.472 | 0.866 | 0.780 | 0.969 | 0.423 | 0.969 | 0.866 |
XGB | 0.908 | 0.811 | 0.411 | 0.805 | 0.859 | 0.978 | 0.357 | 0.978 | 0.805 |
SVM | 0.889 | 0.828 | 0.418 | 0.834 | 0.785 | 0.969 | 0.374 | 0.969 | 0.834 |
KNN | 0.834 | 0.712 | 0.269 | 0.697 | 0.834 | 0.971 | 0.258 | 0.971 | 0.697 |