Table 2 Running times (%d) of all methods on real datasets and high dimensional datasets.

From: A local adaptive fuzzy spectral clustering method for robust and practical clustering

Datasets

K-means

FCM

NC

CAN

FSC

Australian

0.0211

0.1859

5.0242

16.2813

17.6541

Breast

0.0000

0.1055

4.5734

4.2344

4.3569

Cleve

0.0039

0.1414

0.9477

3.3906

3.4789

Diabetes

0.0492

0.1383

5.8063

6.4375

7.5693

Glass

0.0352

0.1984

0.5070

0.6719

0.7189

Heart

0.0219

0.1664

0.7102

0.7656

0.7482

Iris

0.0391

0.0227

0.3609

0.3906

0.4021

Segment

0.0859

3.2156

86.1211

74.4219

80.3645

Waveform

0.0836

0.9563

127.9625

322.2656

342.1456

Wine

0.0219

0.0914

0.3203

0.5781

0.5612

Coil

1.0516

7.7250

37.1773

52.0469

57.2564

Mnist

3.8289

3.9500

245.2844

585.0025

612.3125

MSRA

0.6609

4.9875

50.8930

53.1250

55.0244

Palm

0.8250

5.5250

48.1820

59.5156

65.3212

USPS

0.7883

2.1688

39.5844

97.9531

107.2530